
 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 1 of 138 Rev. 0.17

NUC970 Linux BSP User Manual

The information described in this document is the exclusive intellectual property of
 Nuvoton Technology Corporation and shall not be reproduced without permission from Nuvoton.

Nuvoton is providing this document only for reference purposes of NuMicro microcontroller based
system design. Nuvoton assumes no responsibility for errors or omissions.

All data and specifications are subject to change without notice.

For additional information or questions, please contact: Nuvoton Technology Corporation.

www.nuvoton.com

http://www.nuvoton.com/

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 2 of 138 Rev. 0.17

1 NUC970 Linux BSP Introduction .. 4

1.1 Develop Environment ... 4
1.2 Dev Board Setting ... 5

2 BSP Installation .. 6

2.1 System Requirement .. 6
2.2 Download and installation VMware virtual machine 6
2.3 Download and installation CentOS Linux ... 9
2.4 Install missing packages ... 15
2.5 BSP installation procedures ... 15

3 Nu-Writer Usage Guide .. 18

3.1 Overview .. 18
3.2 Installing the Nu-Writer Driver .. 18
3.3 USB ISP ... 22
3.4 Select Chips .. 23
3.5 DDR/SRAM Mode ... 23
3.6 eMMC Mode .. 24
3.7 SPI Mode .. 26
3.8 NAND Mode .. 28
3.9 MTP Mode ... 33
3.10 PACK Mode ... 35
3.11 Program U-Boot .. 40
3.12 Nu-Writer Trouble Shooting .. 41

4 U-Boot user manual .. 42

4.1 Configuration .. 42
4.2 Directory structure .. 49
4.3 Compile U-Boot ... 50
4.4 NAND AES secure boot example .. 51
4.5 U-Boot Command .. 60
4.6 Environment variables .. 87
4.7 mkimage tool .. 89
4.8 Security issue ... 92
4.9 Watchdog timer ... 92
4.10 U-Boot LCD ... 93
4.11 GPIO .. 94
4.12 Network test environment .. 95
4.13 Notice ... 101

5 Linux Kernel ... 102

5.1 The Configuration Interface for the Kernel 102
5.2 Default Configuration .. 102
5.3 Linux Kernel Configuration ... 102
5.4 Linux Kernel Compilation ... 127

6 Linux user applications .. 129

6.1 Sample applications .. 129

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 3 of 138 Rev. 0.17

6.2 Cross compilation ... 134

7 Revision Hisotry .. 136

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 4 of 138 Rev. 0.17

1 NUC970 Linux BSP Introduction

This BSP supports Nuvoton NUC970 family processors. The NUC970 series targeted for general
purpose 32-bit microcontroller embeds an outstanding CPU core ARM926EJ-S, a RISC processor
designed by Advanced RISC Machines Ltd., runs up to 300 MHz, with 16 KB I-cache, 16 KB D-
cache and MMU, 56KB embedded SRAM and 16 KB IBR (Internal Boot ROM) for booting from
USB, NAND and SPI FLASH.

The NUC970 series processor integrates two 10/100 Mb Ethernet MAC controllers, USB 2.0 HS
HOST/Device controller with HS transceiver embedded, TFT type LCD controller, CMOS sensor
I/F controller, 2D graphics engine, DES/3DES/AES crypto engine, I2S I/F controller,
SD/MMC/NAND FLASH controller, GDMA and 8 channels 12-bit ADC controller with resistance
touch screen functionality. It also integrates UART, SPI/MICROWIRE, I2C, CAN, LIN, PWM,
Timer, WDT/Windowed-WDT, GPIO, Keypad, Smart Card I/F, 32.768 KHz XTL and RTC (Real
Time Clock)

NUC970 Linux BSP includes following contents:

 Linux 3.10 kernel sorce code and NUC970 device drivers.
 GCC 4.3.4 cross compiler with EABI support.
 uClibc-0.9.29
 Binutils-2.19.1
 Demo program for device drivers, busybox, mtd-util, and other open source applications.
 U-Boot source code including NUC970 device drivers.
 Flash programming tool Nu-Writer, and its Windows driver.
 User manuals.

1.1 Develop Environment

This BSP only provides cross development tool chain in Linux environment. So Linux platform is a
must to build Linux kernel, U-Boot, and applications using the cross compiling tool chain in BSP.
This platform could be a dedicate Linux server or running on virtual machine. PC can
communicate with NUC970 Dev Board via different communication interfaces, such as UART,
USB or Ethernet. As well as debug port, JTAG. Above interfaces could be used to load binary file
to EV board for execution. JTAG interface could be used for chip level debug. USB interface is
the interface used by NuWriter to program NAND, SPI, and eMMC. Following figure is an
example of development environment.

Linux PC

NUC970 Dev Board
Windows PC

Ethernet

Ethernet

UART

USB

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 5 of 138 Rev. 0.17

1.2 Dev Board Setting

NUC970 family supports different boot modes, it can boot from SPI, NAND, eMMC, or enter USB
ISP mode. The booting mode is selected by PA[1:0] jumper. Because most I/O pins support
multiplefunctions, the jumpers on DEV board must be set according to the enabled peripherals.
Please refer to “NUC972 Development Board User Manual” for the usage of DEV board.

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 6 of 138 Rev. 0.17

2 BSP Installation

2.1 System Requirement

NUC970 Linux BSP provides cross compilation tools based on Linux operating system. We have
tested this BSP in different x86 Linux distributions, including Ubuntu, CentOS, and Debian…etc.
Because there are so many distributions out there with different system configuration, sometimes
it is necessary to change system setting or manually install some missing component in order to
cross compile.

Linux development environment could either be native, or install in a virtual machine execute on
top of other operating system. This chapter introduces how to install CentOS Linux to VMware
virtual machine, and the steps to install NUC970Linux BSP.

2.2 Download and installation VMware virtual machine

VMware provides free virtual machine VMware player 5.0.2 for users to download from VMware
official website http://www.vmware.com/. Select “Products” “Free Products” “Player”, click
“Download” button, select “5.0 (latest)” as “Major Version” and “5.0.2 (latest)” as “Minor Version”
and then download “VMware Player for Windows 32-bit and 64-bit”. Please refer to the figure
below.

http://www.vmware.com/

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 7 of 138 Rev. 0.17

After download complete, double click the downloaded file.

And then click “Next” to continue installation steps.

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 8 of 138 Rev. 0.17

At last, double click the installed file to create a virtual machine.

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 9 of 138 Rev. 0.17

2.3 Download and installation CentOS Linux

Here introduces the procedure to install CentOS 6.4 under VMWare. It is pretty much the same
with installing as native operating system. First connect to http://www.centos.org/, and enter the
download page by selecting “CentOS 6 Releases” “i386”. Select “CentOS-6.4-i386-bin-DVD
1.iso” to download CentOS 6.4.

http://www.centos.org/

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 10 of 138 Rev. 0.17

If VMware virtual machine is already installed, click “Create a New Virtual Machine” to install
Linux virtual machine, otherwise follow the steps in previous section to complete VMware
installation.

First, click “Installer disc image file (iso):” and “Browse…” and select the downloaded CentOS 6.4
iso as image source file.

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 11 of 138 Rev. 0.17

Input “Full name:”, “User name:”, “Password:”, and “Confirm:” click Confirm button. Please
remember the username and password, they’ll be used to login CentOS later.

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 12 of 138 Rev. 0.17

Next, input “Virtual machine name:” and “Location:” if necessary, otherwise keep the default
value.

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 13 of 138 Rev. 0.17

In the next step, input “Maximum disk size (GB):” value, it is recommend to reserve at least 60GB
disk space, and select “Store virtual disk as a single file”.

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 14 of 138 Rev. 0.17

The last step is to click “Finish” to complete the CentOS configuration.

VMware will automatically complete reset of the CentOS installation procedures.

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 15 of 138 Rev. 0.17

A CentOS login window will shows up after installation complete. You can login using the
username and password set in previous step.

2.4 Install missing packages

Each Linux distribution selects different packages to install. And most distributions do not install
all packages mandatory for NUC970 Linux BSP. And also lack of some optional packages which
might be useful during development. Below listed some packages that may be missing after
installed a Linux distribution but are mandatory or recommend, and could install later manually.

Package name Function
Mandatory/
Optional

Patch Application for apply patch file Mandatory

libc6-dev
Contains required libraries to link with cross
compiling tool chain. (i386 version)

Mandatory

libncurses5-dev
Contains required header files to build
menuconfig interface

Mandatory

Minicom or cutecom
Serial terminal which could display the bootloader
message or Linux console output.

Optional

Each Linux distribution has its own package management system. Ubuntu users could use apt-
get command or Synaptic Package Manager to install packages. And Fedora users could use rpm
command or Package Manager to install packages. Please refer to the manual of the Linux
distribution you use to install missing components.

2.5 BSP installation procedures

Linux BSP contains three directories. Content of each directory listed in following table:
Directory name Content

BSP A tar ball contains U-Boot, Linux kernel, sample application source code. As
well as cross compiler and root file system.

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 16 of 138 Rev. 0.17

Documents BSP related documents.

Tools Writer tool and its driver executing in Windows OS.

Please copy the tar ball under BSP directory to Linux machine and use following command to
extract the file.

$ tar zxvf nuc970bsp.tar.gz

$ cd nuc970bsp

After enter nuc970bsp directory, execute the installation script install.sh. This script requires the
administrator privilege to execute. You can use “su” command to switch to root and execute the
installation script.

$ su

Password: (Enter password of root)

./install.sh

Or execute this script as root by using sudo command. (This method works for those distributions
do not open the root account privilege, such as Ubuntu)

sudo ./install.sh

Below is the console output during installation:

Extract arm_linux_4.3.tar.gz to /usr/local/

Wait for a while

Successfully installed tool chain

Install rootfs.tar.gz, applications.tar.gz and linux-3.10.x.tar.gz

Please enter absolute path for installing(eg:/home/<user name>) :

/home/someone/nuc970_bsp

Please wait for a while, it will take some time

NUC970 BSP installion complete

If your Linux server has already installed the arm_linux_4.3 tools, the installation script will ask
whether or not to overwrite existing tool chain. Otherwise the script will install the tool chain into
/usr/local/arm_linux_4.3 without asking. For the first case, if you want to update the tool chain,

you can select Y(or yes、y、YES), then hit Enter key.

After install the tool chain, the installation script will ask for the absolute path for install kernel and
applications. The table below listed the item will be installed in the specified location

Directory name Content

applications Demo applications and other open source applications, such as busybox,
wireless tool…

image/kernel Pre build kernel using default configuration

image/U-Boot Pre build U-Boot images support either NAND or SPI flash and env.txt file
which stores U-Boot’s environment variable. The default execution address
of U-Boot images is 0xE00000. Please refer to section 3.11 for the
procedure to program U-Boot.

linux-3.10.x Linux kernel source code

rootfs Root file system

U-Boot U-Boot source code

The installation script will try to configured the installed directory with correct owner and group,
and add the path of compiler into $PATH. However, this doesn’t work correctly in every Linux
distribution. User might need to set the owner/group of installed directory with correct user’s

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 17 of 138 Rev. 0.17

name, and add /usr/local/arm_linux_4.3/usr/bin to $PATH manually.
Note: Please logout and re-login after installation complete to make the changes take effect.

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 18 of 138 Rev. 0.17

3 Nu-Writer Usage Guide

3.1 Overview

This tool can help users to program their images into the on-board ROM device when the system
enters USB ISP mode. On-Board ROM device includes eMMC device, SPI Flash device and
NAND Flash.

3.2 Installing the Nu-Writer Driver

This programming tool requires a Nu-Writer driver to be installed on PC first. Please follow the
steps below to install the driver.
Execute the “WinUSB4NuVCOM.exe” before the USB cable is plugged in. The
“WinUSB4NuVCOM.exe” can be found in the “Tool” directory. Power on the NUC970 Series
MCU EVB and plug the USB cable into PC, the Windows shall find a new device and then
request to install its driver.

Click “Next”. The software installation will ask you how to install the driver as following figure..

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 19 of 138 Rev. 0.17

Select “setup path to specific location (Advanced), and then click “Next”. The installation software
will ask to provide a start menu folder, simply click “Next”.

Click “Next”, as follows.

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 20 of 138 Rev. 0.17

Click “Install”.

Click “Finish” to finish install driver.

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 21 of 138 Rev. 0.17

If the installation is successful, and Dev board is connected to PC, a virtual COM port named
“WinUSB driver (Nuvoton VCOM)” can be found by using “Device Manager” to check the ports
devices.

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 22 of 138 Rev. 0.17

3.3 USB ISP

The NUC970 Series Dev board provides jumpers to select boot-up conditions. To select USB ISP
mode, PA1 must be set to low and PA1 must be set to low. Other boot select can refer to the
following table:

Power-on setting PA1 PA0

USB ISP Low Low

Boot from eMMC Low High

Boot from NAND High Low

Boot from SPI High High

Power-on NUC970 Series Dev board, and then open the programming tool, “Nu-Writer” on the
PC. Note that the tool cannot work if the “WinUSB4NuVCOM” driver is not found.

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 23 of 138 Rev. 0.17

3.4 Select Chips

Extract Nu-Writer-xxxxxxxx.7z (in BSP/Tools folder). After double click “nuwriter.exe”, as follows.
Nu-writer support NUC970 series (NUC972, NUC976…) chips, user can select chip and DDR
parameters. Once selected, the user can use the Nu-Writer tool.

3.5 DDR/SRAM Mode

The DDR/SRAM mode is used to download an image to DDR or SRAM for debugging purpose.
Follow the steps is listed below:
1. Select “DDR/SRAM”.
2. Select the image.
3. Enter the image execution address. Note: Execution address between 0x00000000 ~

0x01F00000 (31MB).
4. Select ”Download only” or ”Download and run”

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 24 of 138 Rev. 0.17

5. Click “Download”

3.6 eMMC Mode

This mode can write a new image to eMMC. The Image type can be U-Boot, Data, Environment
or Pack.

 Add a New Image 3.6.1

Follow the steps below to add a new image to eMMC:
1. Select the “eMMC” type, which will not list the pre-programmed images in the eMMC.

2. Fill in the image information：

 Image Name: Browse the image file.
 Image Type Select the image type. (only one type can be selected)
 Image encrypt: Select encrypt file and Set enable or disable.
 Image execute address: Enter image execute address. This setting is only valid for

U-Boot.
 Image start offset: Enter image start offset.

3. Click “Burn”.
4. Waiting for finishing progress bar.
5. After “Burn” the image, click the “Verify” button to read back the image data to make sure
the burning status.

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 25 of 138 Rev. 0.17

 Read Raw Data 3.6.2

Follow the steps below to read data from eMMC:
1. Select the “eMMC”.
2. Click “Read”.
3. Set the file name of read back image.
4. Enter the sectors to read back. Each sector is 512 bytes.

 Start: First sector to read back (In decimal format)
 Length: Total secotrs to read back.(In decimal format)

5. Click “OK”.

 Format (FAT32) 3.6.3

Follow the steps below to format eMMC:

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 26 of 138 Rev. 0.17

1. Select “eMMC”.
2. Click “Format”.
3. Enter Reserve space (1 sector is 512bytes). Note: The reserved space is intent to store

loader, and kernel. There must be sufficient space reserved for them, and rest of the space
will be formatted to a single FAT32 parition.

4. Click “OK”.

3.7 SPI Mode

This mode can program a new image to SPI flash and specify the type of the image. These types
can be recognized by boot loader or Linux. The Image type is set u-Boot, Data, Environment or
Pack.

 Add a New Image 3.7.1

Follow the steps below to add a new image to SPI flash:
1. Select the “SPI” type, which will not list the pre-programmed images in the SPI Flash.
2. Fill in the image information：

 Image Name: Browse the image file.
 Image Type Select the image type. (only one type can be selected)
 Image encrypt: Select encrypt file and Set enable or disable.
 Image execute address: Enter image execute address. This setting is only valid for

U-Boot.
 Image start offset: Enter image start offset.

3. Click “Burn”.
4. Waiting for finishing progress bar.
5. After “Burn” the image, click the “Verify” button to read back the image data to make sure
the burning status.

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 27 of 138 Rev. 0.17

 Read Raw Data 3.7.2

Follow the steps below to read data from SPI flash:
1. Select the “SPI”.
2. Click “Read”.
3. Set the file name of read back image.
4. Enter the blocks to read back. Block size depends on the SPI flash in use.

 Start: Start of blocks
 Length: Length of blocks

5. Click “OK”.

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 28 of 138 Rev. 0.17

 Erase SPI Flash 3.7.3

According to the figure above, follow the steps below to erase SPI flash:
1. Select the “SPI” type.
2. Click “Erase all”, Erase all data on the SPI flash.

3.8 NAND Mode

This mode can program a new image to NAND flash and specify the type of the image. These
types can be recognized by u-boot or Linux. The Image type is set u-Boot, Data, Environment or
Pack. Both YAFFS2 (in-band tags mode) and UBIFS file system image should be programmed
as “Date”.

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 29 of 138 Rev. 0.17

 Add a New Image 3.8.1

Follow the steps below to add a new image to NAND flash:
1. Select the “NAND” type, which will not list the pre-programmed images in the NAND Flash.
2. Fill in the image information：

 Image Name : Browse the image file
 Image Type Select the image type (only one type can be selected)
 Image encrypt: Select encrypt file and Set enable or disable. It cannot use by

Environment type.
 Image execute address: Enter image execute address. This setting is only valid for U-

Boot.
 Image start offset: Enter image start offset.

3. Click “Burn”.
4. Waiting for finishing progress bar.
5. After “Burn” the image, click the “Verify” button to read back the image data to make sure

the burning status.

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 30 of 138 Rev. 0.17

 Read Raw Data 3.8.2

Figure 3-1 NAND – Read
According to the figure above, follow the steps below to read data from NAND flash:
1. Select the “NAND”.
2. Click “Read”.
3. Browse save file.
4. Enter the read back of blocks; Aligned on block size boundary, Block size is based on

NAND specifications.
 Start: Start address of blocks
 Length: Length of blocks

5. Click “OK”.

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 31 of 138 Rev. 0.17

 Erase NAND Flash 3.8.3

According to the figure above, follow the steps below to erase NAND flash:
1. Select the “NAND” type.
2. Click “Erase all”; Erase all data on the NAND flash.

 Make file system image 3.8.4

Make a new yaffs2 image with in-band tags, as follow (yaffs2 tags stored in data blocks)

mkyaffs2 -–inband-tags -p 2048 rootfs rootfs_yaffs2.img

--inband-tags：Tags stored in data blocks.

-p：Set NAND flash page size.

rootfs folder can be compressed into rootfs_yaffs2.img, user can use Nu-Writer tool to burn
rootfs_yafffs2.img into NAND flash.
Enter the following command will mount yaffs2 file system on the Linux.

mount -t yaffs2 –o “inband-tags” /dev/mtdblock2 /flash

Yaffs2 command can be found in yaffs2utils.tar.gz
Make a new ubifs image, as follows:

mkfs.ubifs -F -x lzo -m 2048 -e 126976 -c 732 -o rootfs_ubifs.img -d ./rootfs

ubinize -o ubi.img -m 2048 -p 131072 –O 2048 -s 2048 rootfs_ubinize.cfg

mkfs.ubifs description parameter, as follows:
-r, -d, --root=DIR build file system from directory DIR
-m, --min-io-size=SIZE minimum I/O unit size
-e, --leb-size=SIZE logical erase block size
-c, --max-leb-cnt=COUNT maximum logical erase block count
-o, --output=FILE output to FILE
-j, --jrn-size=SIZE journal size

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 32 of 138 Rev. 0.17

-R, --reserved=SIZE how much space should be reserved for the super-user
-x, --compr=TYPE compression type - "lzo", "favor_lzo", "zlib" or "none" (default: "lzo")
-X, --favor-percent may only be used with favor LZO compression and defines how
many percent better zlib should compress to make mkfs.ubifs use zlib instead of LZO (default
20%)
-f, --fanout=NUM fanout NUM (default: 8)
-F, --space-fixup file-system free space has to be fixed up on first mount (requires
kernel version 3.0 or greater)
-k, --keyhash=TYPE key hash type - "r5" or "test" (default: "r5")
-p, --orph-lebs=COUNT count of erase blocks for orphans (default: 1)
-D, --devtable=FILE use device table FILE
-U, --squash-uids squash owners making all files owned by root
-l, --log-lebs=COUNT count of erase blocks for the log (used only for debugging)
-v, --verbose verbose operation
-V, --version display version information
-g, --debug=LEVEL display debug information (0 - none, 1 - statistics, 2 - files, 3 - more
details)
ubinize description parameter, as follows:
-o, --output= output file name
-p, --peb-size= size of the physical eraseblock of the flash this UBI image is created
for in bytes, kilobytes (KiB), or megabytes (MiB) (mandatory parameter)
-m, --min-io-size= minimum input/output unit size of the flash in bytes
-s, --sub-page-size= minimum input/output unit used for UBI headers, e.g. sub-page size
in case of NAND flash (equivalent to the minimum input/output unit size by default)
-O, --vid-hdr-offset= offset if the VID header from start of the physical eraseblock (default
is the next minimum I/O unit or sub-page after the EC header)
-e, --erase-counter= the erase counter value to put to EC headers (default is 0)
-x, --ubi-ver= UBI version number to put to EC headers (default is 1)
-Q, --image-seq= 32-bit UBI image sequence number to use (by default a random
number is picked)
-v, --verbose be verbose
rootfs_ubinize.cfg content as follows：

[rootfs-volume]

mode=ubi

image=rootfs_ubifs.img

vol_id=0

vol_size=92946432

vol_type=dynamic

vol_name=system

vol_flags=autoresize

rootfs folder can be compressed into ubi.img, user can use Nu-Writer tool to burn ubi.img into
NAND flash.
Enter the following command will mount UBIFS file system on the Linux.
Refer to “/sys/class/misc/ubi_ctrl/dev” content, assuming that the content is "10:56",user can set
as follows.

mknod /dev/ubi_ctrl c 10 56

ubiattach /dev/ubi_ctrl -p /dev/mtd2

mount -t ubifs ubi0:system /flash

UBIFS command can be found in mtd-utils.tar.gz
Linux kernel must also be configuring, as follows:

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 33 of 138 Rev. 0.17

YAFFS2：

File systems --->

 [*] Miscellaneous filesystems --->

 <*> yaffs2 file system support

 <*> Autoselect yaffs2 format

 <*> Enable yaffs2 xattr support

UBIFS：

Device Drivers --->

 -*- Memory Technology Device (MTD) support --->

 <*> Enable UBI - Unsorted block images --->

File systems --->

 [*] Miscellaneous filesystems --->

 <*> UBIFS file system support

 [*] Advanced compression options

 [*] LZO compression support

 [*] ZLIB compression support

Pakages Description

lzo-2.09.tar.gz The compression / decompression tool.
Cross compiler command is as follows:
$ cd lizo-2.09
$./configure --host=arm-linux --prefix=$PWD/../install
$ make
$ make install

libuuid-1.0.3.tar.gz A universally unique identifier tool.
Cross compiler command is as follows:
$ cd libuuid-1.0.3
$./configure --host=arm-linux --prefix=$PWD/../install
$ make
$ make install

mtd-utils.tar.gz mtd-utils source code.
Cross compiler command is as follows:
Thie packages need to use lzo-2.09.tar.gz and libuuid-
1.0.3.tar.gz.
$ cd mtd-utils
$ export CROSS=arm-linux-
$ export WITHOUT_XATTR=1
$ export DESTDR=$PWD/../install
$ export LZOCPPFLAGS=-I/home/install/include
$ export LZOLDFLAGS=-L/home/install/lib
$ make
$ make install

yaffs2utils.tar.gz yaffs2 command tool
$ make

3.9 MTP Mode

On the MTP form, user can select MTP keys file to burn into NUC970 Series MCU. This MTP
keys can protect user’s binary code in device (eMMC, NAND Flash, SPI Flash).

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 34 of 138 Rev. 0.17

 Add a New Key 3.9.1

1. Under the Nu-Writer folder (For example, C:\NuWriter). Enter the key_cfg folder.

2. Create a text file and enter password. The password in the following format, the first line
must be 256, and eight consecutive big-endian modes key. (For example, C:\NuWriter
key_cfg\key.dat).

256

0x12345678

0x23456789

0x3456789a

0x456789ab

0x56789abc

0x6789abcd

0x789abcde

0x89abcdef

3. Re-open “Nu-Writer” tool, and select “MTP”.
4. Select “key.dat”.
5. Select burning option:

 Boot mode selection: eMMC, NAND, or SPI.
 Protection mode selection: SHA or AES.

6. Click “Burn”.

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 35 of 138 Rev. 0.17

3.10 PACK Mode

Pack mode can merge many image into a pack image, user can use Nu-Writer to burn pack
image into the device (NAND flash, SPI flash, eMMC).

 Add a New Image 3.10.1

Follow the steps below to add a new image to pack list:
1. Select the “Pack”.

2. Fill in the image information：

 Image Name: Browse the image file.
 Image Type Select the image type. (only one type can be selected)
 Image encrypt: Select encrypt file and Set enable or disable.
 Image execute address: Enter image execute address. This setting is only valid for

u-boot.
 Image start offset: Enter image start offset.

3. Click “Add”.
4. Waiting for finishing progress bar.
5. After “Burn” the image, click the “Verify” button to read back the image data to make sure
the burning status.

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 36 of 138 Rev. 0.17

 Modify an Image 3.10.2

Follow the steps below to modify image from pack list:
1. Select the “PACK”.
2. Double click Image name in the pack list to modify.
3. Fill in the image information:

 Image Name: Browse the image file.
 Image Type Select the image type. (only one type can be selected)
 Image encrypt: Select encrypt file and Set enable or disable.
 Image execute address: Enter image execute address. This setting is only valid for

u-boot.
 Image start offset: Enter image start offset.

4. Click “Modify”

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 37 of 138 Rev. 0.17

 Delete an Image 3.10.3

Follow the steps below to delete image from pack list:
1. Select “PACK”.
2. Click Image name on the pack list.
3. Click “Delete”

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 38 of 138 Rev. 0.17

 Create a Pack Image 3.10.4

Follow the steps below to output pack image:
1. Select “PACK”.
2. Click“Output”.
3. Browse save file.
4. Click” Open” to output pack image.

 Program a Pack Image 3.10.5

Follow the steps below to burn pack image into NAND flash:

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 39 of 138 Rev. 0.17

1. Select “NAND”.
2. Browse pack image.
3. Select image type to “Pack”.
4. Click “Burn”.

 Create and Program a Pack Image 3.10.6

Preparation of related files:
1. u-boot.bin (Default: offset address is set to 0xA0000, execute address is set to 0xE00000) .
2. u-boot-spl.bin (Default: DDR execute address is set to 0x200) .
3. env.txt (Default: offset address is set to 0x80000).
Suppose user wants to build a pack image includes env.txt, u-boot.bin and u-boot-spl.bin. And
program to NAND flash. Follow the steps below to build pack image:
1. Select “PACK”.

2. Click and select the “env.txt” file path:

3. Click .

4. Click and select the “u-boot-spl.bin” file path:

5. Click .

6. Click and select “u-boot.bin” file path:

7. Click .

8. Click , and save the pack image.
Follow the steps below to burn pack image into NAND flash:
1. Select “NAND”.

2. Click and select pack image file path:

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 40 of 138 Rev. 0.17

3. Click .

3.11 Program U-Boot

Follow the steps below to program u-boot into NAND flash.

 Preparation of related files: 3.11.1

1. u-boot.bin (Default: offset address is set to 0x100000,execute address is set to 0xE00000)
2. u-boot-spl.bin (Default: DDR execute address is set to 0x200) .
3. env.txt (Default: offset address is set to 0x80000).
The detail can reference 4.1 chapters.

 U-Boot environment variable files (env.txt) 3.11.2

env.txt stored U-boot environment variable and value, as follows:

baudrate=115200

bootdelay=3

ethact=emac

ethaddr=00:00:00:11:66:88

stderr=serial

stdin=serial

stdout=serial

Each line as an environment variable, format as follows:
Variable = value
Space cannot exist between variable and value. Line breaks is used (0x0d, 0x0a).
Environment variable detail can reference to chapter 4.6.2.

 Burn U-Boot into NAND Flash 3.11.3

1. Select “NAND”
2. Select u-boot-spl.bin , set image type to u-Boot mode, set image execute address to

0x200, Click “burn” to burn u-boot-spl.bin.
3. Select u-boot.bin, set image type to Data, set image start offset to 0x100000, click “burn” to

burn u-boot.bin.
4. Select env.txt, set image type to Environment, set image start offset as 0x80000, click

“burn” to burn env.txt.

 Burn U-Boot into SPI Flash 3.11.4

1. Select “SPI”

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 41 of 138 Rev. 0.17

2. Select u-boot.bin, set image type to u-Boot, set image execute address to 0xE00000, click
“burn” to burn u-boot.bin.

3. Select env.txt, set image type to Environment mode, set image start offset to 0x80000, click
“burn” to burn env.txt.

 Burn U-Boot into eMMC 3.11.5

1. Select “eMMC”.
2. Select u-boot.bin, set image type is u-Boot, set image execute address to 0xE00000, click

“burn” to burn u-boot.bin.

3. （image execute address is changed,detail can reference 4.3.3 chapters）

4. Select env.txt, set image type to Environment, set image start offset to 0x80000, click “burn”
to burn env.txt .

3.12 Nu-Writer Trouble Shooting

Nu-Writer development is based on the Microsoft visual C++ 2008. If Nu-Writer cannot work, then
your PC needs to install “Microsoft Visual C++ 2008 Redistributables” which can be downloaded
from following URL: http://www.microsoft.com/en-us/download/details.aspx?id=29

https://webmail.nuvoton.com/owa/redir.aspx?C=zWSEkG9iUEuFuOKrJn6n6e-zfCUGxtFIDikbfrAnqxgNFYbcf44iC9MDRc-yagb2f6_7SRGa5Us.&URL=http%3a%2f%2fwww.microsoft.com%2fen-us%2fdownload%2fdetails.aspx%3fid%3d29

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 42 of 138 Rev. 0.17

4 U-Boot user manual

The U-Boot utility is a multi-platform, open-source, universal boot-loader with comprehensive
support for loading and managing boot images, such as the Linux kernel. It supports the
following features:
 Network download: TFTP, BOOTP, DHCP
 Serial download: s-record, binary (via Kermit)
 Flash management: erase, read, update, yaffs2
 Flash types: SPI flash, NAND flash
 Memory utilities: dump, compare, copy, write
 Interactive shell: commands with scripting features

NUC970 U-Boot version is 201304RC2. It is downloaded from http://www.denx.de/wiki/U-
Boot/SourceCode
To know more detailed description of U-Boot can visit U-Boot official website
http://www.denx.de/wiki/view/DULG/UBoot

4.1 Configuration

U-Boot is configurable by modifying the definitions in configuration file.
NUC970 configuration file is located in include/configs/nuc970_evb.h
Below are the definitions in nuc970_evb.h.

#define CONFIG_SYS_LOAD_ADDR 0x8000

#define CONFIG_EXT_CLK 12000000 /* 12 MHz crystal */

#define CONFIG_TMR_DIV 120 /* timer prescaler */

#define CONFIG_SYS_HZ 1000

#define CONFIG_SYS_MEMTEST_START 0xA00000

#define CONFIG_SYS_MEMTEST_END 0xB00000

#define CONFIG_ARCH_CPU_INIT

#undef CONFIG_USE_IRQ

#define CONFIG_CMDLINE_TAG 1 /* enable passing of ATAGs
 */

#define CONFIG_SETUP_MEMORY_TAGS 1

#define CONFIG_INITRD_TAG 1

#define CONFIG_SETUP_MEMORY_TAGS 1

#define CONFIG_NUC970_HW_CHECKSUM

#define CONFIG_CMD_TIMER

 CONFIG_SYS_LOAD_ADDR: the load address for downloading image
 CONFIG_EXT_CLK: external crystal clock rate
 CONFIG_TMR_DIV: timer timer pre-scale
 CONFIG_SYS_HZ: timer frequency
 CONFIG_SYS_MEMTEST_START: start address of memory test
 CONFIG_SYS_MEMTEST_END: end address of memory test
 CONFIG_NUC970_HW_CHECKSUM: Use SHA-1 to calculate the checksum of Linux

kernel (otherwise, use crc32 to calculate checksum),It should cooperate with mkimage
tool,Please reference chapter 4.7.2 .

http://www.denx.de/wiki/U-Boot/SourceCode
http://www.denx.de/wiki/U-Boot/SourceCode
http://www.denx.de/wiki/view/DULG/UBoot

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 43 of 138 Rev. 0.17

 CONFIG_CMD_TIMER: Use timer relative command

#define CONFIG_SYS_USE_SPIFLASH

#define CONFIG_SYS_USE_NANDFLASH

#define CONFIG_ENV_IS_IN_NAND

//#define CONFIG_ENV_IS_IN_SPI_FLASH

#define CONFIG_BOARD_EARLY_INIT_F

#define CONFIG_BOARD_LATE_INIT

#define CONFIG_NUC970_WATCHDOG

#define CONFIG_HW_WATCHDOG

#define CONFIG_DISPLAY_CPUINFO

#define CONFIG_BOOTDELAY 3

#define CONFIG_SYS_SDRAM_BASE 0

#define CONFIG_NR_DRAM_BANKS 2

#define CONFIG_SYS_INIT_SP_ADDR 0xBC008000

#define CONFIG_BAUDRATE 115200

#define CONFIG_SYS_BAUDRATE_TABLE {115200, 57600, 38400}

#define CONFIG_NUC970_EMAC0

//#define CONFIG_NUC970_EMAC1

#define CONFIG_CMD_NET

#define CONFIG_NUC970_ETH

#define CONFIG_NUC970_PHY_ADDR 1

#define CONFIG_ETHADDR 00:00:00:11:66:88

#define CONFIG_SYS_RX_ETH_BUFFER 16 // default is 4, set to 16 here.

#define CONFIG_NUC970_CONSOLE

#define CONFIG_SYS_ICACHE_OFF

#define CONFIG_SYS_DCACHE_OFF

 CONFIG_SYS_USE_SPIFLASH: Use SPI flash
 CONFIG_SYS_USE_NANDFLASH: Use NAND flash
 CONFIG_ENV_IS_IN_NAND: Environment variables are stored in NAND flash
 CONFIG_ENV_IS_IN_SPI_FLASH: Environment variables are stored in SPI flash
 CONFIG_NUC970_WATCHDOG: Compile NUC970 watchdog timer driver
 CONFIG_HW_WATCHDOG: Enable hardware watchdog timer function (Enable

CONFIG_NUC970_WATCHDOG at the same time)
 CONFIG_DISPLAY_CPUINFO: Display CPU relative information
 CONFIG_BOOTDELAY: default boot delay time
 CONFIG_SYS_INIT_SP_ADDR: the stack pointer during system initialization

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 44 of 138 Rev. 0.17

 CONFIG_BAUDRATE: UART baud rate
 CONFIG_NUC970_EMAC0: Use NUC970 EMAC0
 CONFIG_NUC970_EMAC1: Use NUC970 EMAC1
 CONFIG_NUC970_ETH: Support NUC970 Ethernet
 CONFIG_NUC970_PHY_ADDR: PHY address
 CONFIG_CMD_NET: support network relative commands
 CONFIG_ETHADDR: MAC address
 CONFIG_SYS_RX_ETH_BUFFER: the number of Rx Frame Descriptors

/*

 * BOOTP options

 */

#define CONFIG_BOOTP_BOOTFILESIZE 1

#define CONFIG_BOOTP_BOOTPATH 1

#define CONFIG_BOOTP_GATEWAY 1

#define CONFIG_BOOTP_HOSTNAME 1

#define CONFIG_BOOTP_SERVERIP /* tftp serverip not overruled by dhcp server
*/

/*

 * Command line configuration.

 */

#include <config_cmd_default.h>

#undef CONFIG_CMD_LOADS

#undef CONFIG_CMD_SOURCE

#define CONFIG_CMD_PING 1

#define CONFIG_CMD_DHCP 1

#define CONFIG_CMD_JFFS2 1

 CONFIG_BOOTP_SERVERIP: TFTP server IP not overruled by DHCP server.
 CONFIG_CMD_PING: Use ping command
 CONFIG_CMD_DHCP: Use DHCP command
 CONFIG_CMD_JFFS2: Support JFFS2 command

#ifdef CONFIG_SYS_USE_NANDFLASH

#define CONFIG_NAND_NUC970

#define CONFIG_CMD_NAND 1

#define CONFIG_CMD_UBI 1

#define CONFIG_CMD_UBIFS 1

#define CONFIG_CMD_MTDPARTS 1

#define CONFIG_MTD_DEVICE 1

#define CONFIG_MTD_PARTITIONS 1

#define CONFIG_RBTREE 1

#define CONFIG_LZO 1

#define MTDIDS_DEFAULT “nand0=nand0”

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 45 of 138 Rev. 0.17

#define MTDPARTS_DEFAULT “mtdparts=nand0:0x200000@0x0(u-
boot),0x1400000@0x200000(kernel),-(user)”

#define MTD_ACTIVE_PART “nand0,2”

#define CONFIG_CMD_NAND_YAFFS2 1

#define CONFIG_YAFFS2 1

#define CONFIG_SYS_MAX_NAND_DEVICE 1

#define CONFIG_SYS_NAND_BASE 0xB000D000

#ifdef CONFIG_ENV_IS_IN_NAND

#define CONFIG_ENV_OFFSET 0x80000

#define CONFIG_ENV_SIZE 0x10000

#define CONFIG_ENV_SECT_SIZE 0x20000

#define CONFIG_ENV_RANGE (4 * CONFIG_ENV_SECT_SIZE) /* Env range :
0x80000 ~ 0x100000 */

#define CONFIG_ENV_OVERWRITE

#endif

#endif#define CONFIG_SYS_NAND_U_BOOT_OFFS (0x100000) /* Offset to RAM
U-Boot image */

/* total memory available to uboot */

#define CONFIG_SYS_UBOOT_SIZE (1024 * 1024)

#ifdef CONFIG_NAND_SPL

/* base address for uboot */

#define CONFIG_SYS_PHY_UBOOT_BASE (CONFIG_SYS_SDRAM_BASE + 0xE00000)

#define CONFIG_SYS_NAND_U_BOOT_DST CONFIG_SYS_PHY_UBOOT_BASE /*
NUB load-addr */

#define CONFIG_SYS_NAND_U_BOOT_START CONFIG_SYS_NAND_U_BOOT_DST /*
NUB start-addr */

#define CONFIG_SYS_NAND_U_BOOT_SIZE (500 * 1024) /* Size of RAM U-
Boot image */

/* NAND chip page size */

#define CONFIG_SYS_NAND_PAGE_SIZE 2048

/* NAND chip block size */

#define CONFIG_SYS_NAND_BLOCK_SIZE (128 * 1024)

/* NAND chip page per block count */

#define CONFIG_SYS_NAND_PAGE_COUNT 64

#endif //CONFIG_NAND_SPL

 CONFIG_NAND_NUC970: Enable NUC970 NAND function

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 46 of 138 Rev. 0.17

 CONFIG_CMD_NAND: Use nand command
 CONFIG_MTD_DEVICE: Enable MTD device
 CONFIG_MTD_PARTITIONS: Enable MTD partition
 CONFIG_CMD_UBI: Enable UBI
 CONFIG_CMD_UBIFS: Enable UBIFS file system
 CONFIG_CMD_MTDPARTS: Use MTD partition command.
 CONFIG_RBTREE: Enable the configuration UBI need
 CONFIG_LZO: Enable the configuration UBI need
 MTDIDS_DEFAULT: Set MTD ID name, it needs to be the same as Linux kernel.
 MTDPARTS_DEFAULT: MTD partition configuration
 CONFIG_SYS_MAX_NAND_DEVICE: Maximum NAND device
 CONFIG_SYS_NAND_BASE: NAND controller base address
 CONFIG_ENV_OFFSET: flash offset address that environment variables are stored.
 CONFIG_ENV_SIZE: The space reserved for environment variables
 CONFIG_ENV_SECT_SIZE: The sector size of flash that environment variables are stored.
 CONFIG_ENV_RANGE: The range of environment variables, from

CONFIG_ENV_OFFSET to CONFIG_ENV_OFFSET + CONFIG_ENV_RANGE. (When the
block is a bad block, U-Boot will store environment variables to next block.)

 CONFIG_SYS_NAND_U_BOOT_OFFS: The NAND flash offset address that U-Boot is
stored.

 CONFIG_SYS_UBOOT_SIZE: U-Boot total space (code + data + heap)
 CONFIG_SYS_PHY_UBOOT_BASE: U-Boot execution address
 CONFIG_SYS_NAND_U_BOOT_SIZE: U-Boot image size
 CONFIG_SYS_NAND_PAGE_SIZE: NAND flash page size
 CONFIG_SYS_NAND_BLOCK_SIZE: NAND flash block size
 CONFIG_SYS_NAND_PAGE_COUNT: The page count per NAND flash block

/* SPI flash test code */

#ifdef CONFIG_SYS_USE_SPIFLASH

#define CONFIG_SYS_NO_FLASH 1

//#define CONFIG_SYS_MAX_FLASH_SECT 256

//#define CONFIG_SYS_MAX_FLASH_BANKS 1

#define CONFIG_NUC970_SPI 1

#define CONFIG_CMD_SPI 1

#define CONFIG_CMD_SF 1

#define CONFIG_SPI 1

#define CONFIG_SPI_FLASH 1

//#define CONFIG_SPI_FLASH_MACRONIX 1

#define CONFIG_SPI_FLASH_WINBOND 1

#define CONFIG_SPI_FLASH_EON 1

#ifdef CONFIG_ENV_IS_IN_SPI_FLASH

#define CONFIG_ENV_OFFSET 0x80000

#define CONFIG_ENV_SIZE 0x10000

#define CONFIG_ENV_SECT_SIZE 0x10000

#define CONFIG_ENV_OVERWRITE

#endif

#endif

 CONFIG_CMD_SF: Use SPI flash sf command.

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 47 of 138 Rev. 0.17

 CONFIG_SPI_FLASH_MACRONIX: Use MACRONIX SPI flash
 CONFIG_SPI_FLASH_WINBOND: Use Winbond SPI flash
 CONFIG_SPI_FLASH_EON: Use EON SPI flash
 CONFIG_ENV_OFFSET: The offset of flash that environment variables are stored
 CONFIG_ENV_SIZE: The space reserved for environment variables

#define CONFIG_SYS_PROMPT "U-Boot> "

#define CONFIG_SYS_CBSIZE 256

#define CONFIG_SYS_MAXARGS 16

#define CONFIG_SYS_PBSIZE (CONFIG_SYS_CBSIZE +
sizeof(CONFIG_SYS_PROMPT) + 16)

#define CONFIG_SYS_LONGHELP 1

#define CONFIG_CMDLINE_EDITING 1

#define CONFIG_AUTO_COMPLETE

#define CONFIG_SYS_HUSH_PARSER

#define CONFIG_SYS_PROMPT_HUSH_PS2 "> "

 CONFIG_SYS_PROMPT: Show prompt message
 CONFIG_SYS_LONGHELP: Display detailed help message.
 CONFIG_CMDLINE_EDITING: Permit command line editing.

/* Following block is for LCD support */

#define CONFIG_LCD

#define CONFIG_NUC970_LCD

#define LCD_BPP LCD_COLOR16

#define CONFIG_LCD_LOGO

#define CONFIG_LCD_INFO

#define CONFIG_LCD_INFO_BELOW_LOGO

#define CONFIG_SYS_CONSOLE_IS_IN_ENV

#define CONFIG_SYS_CONSOLE_OVERWRITE_ROUTINE

 CONFIG_LCD: Enable LCD
 CONFIG_NUC970_LCD: Compile NUC970 driver
 LCD_BPP: The number of bits per pixel output to LCD.
 CONFIG_LCD_LOGO: Show the LOGO to LCD
 CONFIG_LCD_INFO: Show U-Boot version and NUC970 relative information to LCD.
 CONFIG_LCD_INFO_BELOW_LOGO: Show NUC970 relative information below the

LOGO.
 CONFIG_SYS_CONSOLE_IS_IN_ENV: stdin/stdout/stderr use the setting of environment

variables
 CONFIG_SYS_CONSOLE_OVERWRITE_ROUTINE: stdin/stdout/stderr switch to serial

port

/* Following block is for MMC support */

#define CONFIG_NUC970_MMC

#define CONFIG_CMD_MMC

#define CONFIG_CMD_FAT

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 48 of 138 Rev. 0.17

#define CONFIG_MMC

#define CONFIG_GENERIC_MMC

#define CONFIG_DOS_PARTITION

#define CONFIG_NUC970_SD_PORT0

#define CONFIG_NUC970_SD_PORT1

#define CONFIG_NUC970_EMMC

 CONFIG_NUC970_MMC: Compile NUC970 driver
 CONFIG_CMD_MMC: Support MMC command
 CONFIG_CMD_FAT: Support FAT command
 CONFIG_MMC: Support MMC
 CONFIG_GENERIC_MMC: Support generic MMC
 CONFIG_DOS_PARTITION: Support DOS partition
 CONFIG_NUC970_SD_PORT0: Support SD port 0
 CONFIG_NUC970_SD_PORT1: Support SD port 1
 CONFIG_NUC970_EMMC: Support eMMC

/* Following block is for EHCI support*/

#if 1

#define CONFIG_CMD_USB

#define CONFIG_CMD_FAT

#define CONFIG_USB_STORAGE

#define CONFIG_USB_EHCI

#define CONFIG_USB_EHCI_NUC970

#define CONFIG_EHCI_HCD_INIT_AFTER_RESET

#define CONFIG_DOS_PARTITION

#endif

 CONFIG_CMD_USB: Support USB command
 CONFIG_CMD_FAT: Support FAT command
 CONFIG_USB_STORAGE: Support USB storage
 CONFIG_USB_EHCI: Support USB 2.0
 CONFIG_USB_EHCI_NUC970: Support NUC970 USB 2.0
 CONFIG_DOS_PARTITION: Support DOS partition

#define CONFIG_NUC970_GPIO

/*

 * Size of malloc() pool

 */

#define CONFIG_SYS_MALLOC_LEN (1024*1024)

#define CONFIG_STACKSIZE (32*1024) /* regular stack */

#endif

 CONFIG_NUC970_GPIO: Enable GPIO function

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 49 of 138 Rev. 0.17

 CONFIG_SYS_MALLOC_LEN: The space reserved for malloc
 CONFIG_STACKSIZE: Stack size.

4.2 Directory structure

The directory structure of U-Boot source code is as below.

 arch: This directory contains CPU relative source code.
 The CPU relative source code of NUC970 is under arch/arm/cpu/arm926ejs/nuc970.
 board: This directory contains board relative source code.
 The board relative source code of NUC970 is under board/nuvoton/nuc970_evb.
 common: This directory contains U-Boot command and other common source code.
 doc: This directory contains miscellaneous README document.
 drivers: This directory contains miscellaneous driver source code.
 The driver relative source code of NUC970 is under directory drivers. For instance the

Ethernet driver is under drivers/net/nuc970_eth.c
 examples: This directory contains some examples. For instance, mips.lds is the linker script

file for MIPS.
 fs: This directory contains miscellaneous file systems. For instance, FAT, yaffs2.
 include: This directory contains header file and configuration file. NUC970 configuration file

is under include/configs/nuc970_evb.h
 lib: This directory contains miscellaneous library.

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 50 of 138 Rev. 0.17

 nand_spl: This directory contains NAND boot source code.
 net: This directory contains network relative source code. For instance, tftp.c, ping.c,
 tools: This directory contains some tools. For instance, mkimage is the tool to make a

image.

4.3 Compile U-Boot

 Compile command 4.3.1

Clean all object code.

make O=../build/nuc970_uboot/ distclean

Compile U-Boot

make O=../build/nuc970_uboot/ nuc970_config

make O=../build/nuc970_uboot/ all

(make option “O” designates the directory object code will be generated to, and can be omitted)

If you don’t need SPL U-Boot (for NAND boot), the compile command are as below.

make O=../build/nuc970_uboot/ distclean

make O=../build/nuc970_uboot/ nuc970_nonand_config

make O=../build/nuc970_uboot/ all

(make option “O” designates the directory object code will be generated to, and can be omitted)

 Output file after compilation 4.3.2

If you compile successfully, you can get Main U-Boot and SPL U-Boot:
Main U-Boot : Full function U-Boot
SPL U-Boot : Move Main U-Boot from NAND flash to DDR and boot Main U-Boot

SPL U-Boot : It’s only for NAND boot；SPI boot and eMMC boot need Main U-Boot only.

Main U-Boot and SPL U-Boot are generated in root directory and sub-directory nand_spl:
Main U-Boot files are generated in root directory.
 u-boot - Elf executable file (for download with GDB or IDE)
 u-boot.bin - binary file (You can use Nu-Writer to burn it to NAND/SPI flash、eMMC,Please

reference 3.11)
 u-boot.map –Linker memory map file

SPL U-Boot files are generated in sub-directory nand_spl
 u-boot-spl - Elf executable file (for download with GDB or IDE)

 u-boot-spl.bin - binary file (You can use Nu-Writer to burn it to NAND/SPI flash、

eMMC,Please reference 3.11.3)
 u-boot-spl.map –Linker memory map file

 Main U-Boot link address 4.3.3

Main U-Boot link address is defined in Makefile.
Please find the following code segment

nuc970_config: unconfig

 @mkdir -p $(obj)include $(obj)board/nuvoton/nuc970evb

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 51 of 138 Rev. 0.17

 @mkdir -p $(obj)nand_spl/board/nuvoton/nuc970evb

 @echo "#define CONFIG_NAND_U_BOOT" > $(obj)include/config.h

 @echo "CONFIG_NAND_U_BOOT = y" >> $(obj)include/config.mk

 @echo "RAM_TEXT = 0xE00000" >>
$(obj)board/nuvoton/nuc970evb/config.tmp

RAM_TEXT is U-Boot link address,
In this example, “RAM_TEXT = 0xE00000” means U-Boot link address is 0xE00000

If boot mode is NAND Boot, please also modify the definition in include/configs/nuc970_evb.h

#define CONFIG_SYS_PHY_UBOOT_BASE (CONFIG_SYS_SDRAM_BASE + 0xE00000)

CONFIG_SYS_PHY_UBOOT_BASE must be the same as RAM_TEXT in Makefile.

 SPL U-Boot link address 4.3.4

SPL U-Boot link address is defined in board/nuvoton/nuc970evb/config.mk
Default address is 0x200, if you want to modify it to other address, please find the following code
segment, and replace 0x200 with new address.

ifndef CONFIG_NAND_SPL

CONFIG_SYS_TEXT_BASE = $(RAM_TEXT)

else

CONFIG_SYS_TEXT_BASE = 0x200

4.4 NAND AES secure boot example

NAND AES secure boot need Main U-Boot and SPL U-Boot, and use Nu-Writer to encrypt SPL
U-Boot by AES and burn to NAND flash.

 Compile Main U-Boot 以及 SPL U-Boot 4.4.1

make O=../build/nuc970_uboot/ distclean

make O=../build/nuc970_uboot/ nuc970_config

make O=../build/nuc970_uboot/ all

(make option “O” designates the directory object code will be generated to, and can be omitted)
After compilation success, find out the binary file of Main U-Boot and SPL U-Boot.
 Main U-Boot binary file is generated in root directory,file name is u-boot.bin
 SPL U-Boot binary file is generated in sub-directory nand_spl,file name is u-boot-spl.bin

 Burn SPL U-Boot 4.4.2

Choose type : select “NAND”.

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 52 of 138 Rev. 0.17

Then set Parameters as below picture,
Image Name: select u-boot-spl.bin,
Image Type: select uBoot,
Image encrypt: select Enable
Image execute address:0x Fill in 200

Then press “Burn” button.

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 53 of 138 Rev. 0.17

There is a dialog box, choose “OK”.

A dialog box shows burn successfully message.

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 54 of 138 Rev. 0.17

 Burn Main U-Boot 4.4.3

Choose type: select “NAND”.

Set burning parameters.
Image Name: select u-boot.bin,
Image Type: select Data,
Image execute address:0x Fill in 100000

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 55 of 138 Rev. 0.17

Press “Burn” button.

A dialog box ask if confirm the operation, select “OK”.

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 56 of 138 Rev. 0.17

A dialog box shows burn successfully message.

 Burn Linux kernel 4.4.4

Choose type : select “NAND”.

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 57 of 138 Rev. 0.17

Set burning parameters.
Image Name: select vmlinux.ub (Please reference 4.7 to know how to generate vmlinux.ub).
Image Type: select Data,
Image execute address:0x Fill in 200000

Press “Burn” button.

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 58 of 138 Rev. 0.17

A dialog box ask if confirm this operation, choose “OK”

A dialog box shows burn successfully message.

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 59 of 138 Rev. 0.17

 nboot command to boot Linux kernel in NAND flash 4.4.5

Following example demonstrate use nboot command to read Linux kernel image stored in NAND
flash offset 0x200000 to DDR address 0x7fc0. Then use bootm command to boot Linux kernel.

U-Boot> nboot 0x7fc0 0 0x200000

Loading from nand0, offset 0x200000

 Image Name:

 Image Type: ARM Linux Kernel Image (uncompressed)

 Data Size: 1639744 Bytes = 1.6 MiB

 Load Address: 00007FC0

 Entry Point: 00008000

U-Boot> bootm 0x7fc0

Booting kernel from Legacy Image at 00007fc0 ...

 Image Name:

 Image Type: ARM Linux Kernel Image (uncompressed)

 Data Size: 1639744 Bytes = 1.6 MiB

 Load Address: 00007FC0

 Entry Point: 00008000

 Verifying Checksum ... OK

 XIP Kernel Image ... OK

OK

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 60 of 138 Rev. 0.17

Starting kernel ...

4.5 U-Boot Command

U-boot provides a powerful command line interface which may be accessed through a terminal
emulator connected to the target board's serial port. For example type "help" at the command
prompt will print a list of all the available commands:

U-Boot> help

0 - do nothing, unsuccessfully

1 - do nothing, successfully

? - alias for 'help'

base - print or set address offset

bdinfo - print Board Info structure

boot - boot default, i.e., run 'bootcmd'

bootd - boot default, i.e., run 'bootcmd'

…

For most commands, you do not need to type in the full command name; instead it is sufficient to
type a few characters. For instance, help can be abbreviated as h. Almost all U-Boot commands
expect numbers to be entered in hexadecimal input format. (Exception: for historical reasons, the
sleep command takes its argument in decimal input format.)

 Bootm command 4.5.1

Since Linux kernel image is stored in network、NAND、SPI、USB、MMC, we can download

Linux kernel to DDR by those storage relative command, then boot Linux kernel by bootm
command.
Hence, bootm command is used to boot Linux kernel or other application program.
bootm command format is as below:

U-Boot> help bootm

bootm - boot application image from memory

Usage:

bootm [addr [arg ...]]

 - boot application image stored in memory

 passing arguments 'arg ...'; when booting a Linux kernel,

 'arg' can be the address of an initrd image

Suppose we have downloaded Linux kernel to DDR address 0x7fc0, then we can boot Linux
kernel by bootm command.

U-Boot> bootm 0x7fc0

Booting kernel from Legacy Image at 00007fc0 ...

 Image Name:

 Image Type: ARM Linux Kernel Image (uncompressed)

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 61 of 138 Rev. 0.17

 Data Size: 1639744 Bytes = 1.6 MiB

 Load Address: 00007FC0

 Entry Point: 00008000

 Verifying Checksum ... OK

 XIP Kernel Image ... OK

OK

Starting kernel ...

 Go command 4.5.2

 go: start application

U-Boot> help go

go - start application at address 'addr'

Usage:

go addr [arg ...]

 - start application at address 'addr'

 passing 'arg' as arguments

Below example is to start an application program that has been downloaded to DDR 0x100000

U-Boot> go 0x100000

Starting application at 0x00100000 ...

 Hello World!

 Network relative command 4.5.3

 ping
Transmit ICMP ECHO_REQUEST packet to network host

U-Boot> help ping

ping - send ICMP ECHO_REQUEST to network host

Usage:

ping pingAddress

U-Boot>

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 62 of 138 Rev. 0.17

Before using this command, you have to set variables ipaddr that is the IP address of your
platform.
Below is an example that set IP address of NUC970 to 192.168.0.101 and ping a remote PC
whose IP address is 192.168.0.100

U-Boot> set ipaddr 192.168.0.101

U-Boot> ping 192.168.0.100

Using emac device

host 192.168.0.100 is alive

U-Boot>

 tftp
Download image via network using TFTP protocol.

U-Boot> help tftp

tftpboot - boot image via network using TFTP protocol

Usage:

tftpboot [loadAddress] [[hostIPaddr:]bootfilename]

U-Boot>

Before using this command, you have to set variables ipaddr and serverip.
Below is an example to download a Linux kernel image by TFTP protocol. First, set IP address of
NUC970 and TFTP server to 192.168.0.101 and 192.168.0.100 respectively. Second, download
Linux kernel image to address 0x200000 by TFTP protocol. Third, boot Linux kernel by command
bootm.

U-Boot> set ipaddr 192.168.0.101

U-Boot> set serverip 192.168.0.100

U-Boot> tftp 0x7fc0 vmlinux.ub

Using emac device

TFTP from server 192.168.0.100; our IP address is 192.168.0.101

Filename 'vmlinux.ub'.

Load address: 0x7FC0

Loading: *###

 ###

 887.7 KiB/s

done

Bytes transferred = 1639808 (190580 hex)

U-Boot> bootm 0x7FC0

Booting kernel from Legacy Image at 007FC0 ...

 Image Name:

 Image Type: ARM Linux Kernel Image (uncompressed)

 Data Size: 1639744 Bytes = 1.6 MiB

 Load Address: 00007FC0

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 63 of 138 Rev. 0.17

 Entry Point: 00008000

 Verifying Checksum ... OK

 Loading Kernel Image ... OK

OK

Starting kernel ...

 dhcp
Download image via network using DHCP/TFTP protocol

U-Boot> help dhcp

dhcp - boot image via network using DHCP/TFTP protocol

Usage:

dhcp [loadAddress] [[hostIPaddr:]bootfilename]

U-Boot>

Below is an example to download Linux kernel image to address 0x7fc0 by DHCP/TFTP protocol.
You don’t have to set ipaddr for your platform, since DHCP server will assign an IP for you.

U-Boot> dhcp 0x7fc0 vmlinux.ub

BOOTP broadcast 1

*** Unhandled DHCP Option in OFFER/ACK: 7

*** Unhandled DHCP Option in OFFER/ACK: 7

DHCP client bound to address 192.168.0.102

Using emac device

TFTP from server 192.168.0.100; our IP address is 192.168.0.102; sending
through gateway 192.168.0.100

Filename 'vmlinux.ub'.

Load address: 0x7fc0

Loading: *###

 ###

 1 MiB/s

done

Bytes transferred = 1639808 (190580 hex)

U-Boot> bootm 0x7fc0

Booting kernel from Legacy Image at 00007fc0 ...

 Image Name:

 Image Type: ARM Linux Kernel Image (uncompressed)

 Data Size: 1639744 Bytes = 1.6 MiB

 Load Address: 00007FC0

 Entry Point: 00008000

 Verifying Checksum ... OK

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 64 of 138 Rev. 0.17

 XIP Kernel Image ... OK

OK

Starting kernel ...

 bootp
Download image via network using BOOTP/TFTP protocol

U-Boot> help bootp

bootp - boot image via network using BOOTP/TFTP protocol

Usage:

bootp [loadAddress] [[hostIPaddr:]bootfilename]

U-Boot>

Below is an example to download Linux kernel image to address 0x7fc0 by BOOTP/TFTP
protocol. You don’t have to set ipaddr for your platform, since DHCP server will assign an IP for
you.

U-Boot> bootp 0x7fc0 vmlinux.ub

BOOTP broadcast 1

*** Unhandled DHCP Option in OFFER/ACK: 7

*** Unhandled DHCP Option in OFFER/ACK: 7

DHCP client bound to address 192.168.0.102

Using emac device

TFTP from server 192.168.0.100; our IP address is 192.168.0.102; sending
through gateway 192.168.0.100

Filename 'vmlinux.ub'.

Load address: 0x7fc0

Loading: *###

 ###

 1 MiB/s

done

Bytes transferred = 1639808 (190580 hex)

U-Boot> bootm 0x7fc0

Booting kernel from Legacy Image at 00007fc0 ...

 Image Name:

 Image Type: ARM Linux Kernel Image (uncompressed)

 Data Size: 1639744 Bytes = 1.6 MiB

 Load Address: 00007FC0

 Entry Point: 00008000

 Verifying Checksum ... OK

 XIP Kernel Image ... OK

OK

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 65 of 138 Rev. 0.17

Starting kernel ...

 Nand flash commands 4.5.4

 nand: NAND Sub-system
U-Boot supports NAND flash relative commands, including nand info/device/erase/read/write.
Command format is as below:

U-Boot> help nand

nand - NAND sub-system

Usage:

nand info - show available NAND devices

nand device [dev] - show or set current device

nand read - addr off|partition size

nand write - addr off|partition size

 read/write 'size' bytes starting at offset 'off'

 to/from memory address 'addr', skipping bad blocks.

nand read.raw - addr off|partition [count]

nand write.raw - addr off|partition [count]

 Use read.raw/write.raw to avoid ECC and access the flash as-is.

nand erase[.spread] [clean] off size - erase 'size' bytes from offset 'off'

 With '.spread', erase enough for given file size, otherwise,

 'size' includes skipped bad blocks.

nand erase.part [clean] partition - erase entire mtd partition'

nand erase.chip [clean] - erase entire chip'

nand bad - show bad blocks

nand dump[.oob] off - dump page

nand scrub [-y] off size | scrub.part partition | scrub.chip

 really clean NAND erasing bad blocks (UNSAFE)

nand markbad off [...] - mark bad block(s) at offset (UNSAFE)

nand biterr off - make a bit error at offset (UNSAFE)

U-Boot>

Below example show NAND Page size/OOB size/Erase size information by nand info/device
command.

U-Boot> nand info

Device 0: nand0, sector size 128 KiB

 Page size 2048 b

 OOB size 64 b

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 66 of 138 Rev. 0.17

 Erase size 131072 b

U-Boot> nand device

Device 0: nand0, sector size 128 KiB

 Page size 2048 b

 OOB size 64 b

 Erase size 131072 b

U-Boot>

nand erase.chip erase whole chip.

U-Boot> nand erase.chip

NAND erase.chip: device 0 whole chip

99% complete.Erasing at 0x7fe0000 -- 100% complete.

OK

U-Boot>

Below is an example to write a Linux kernel image to NAND flash. The Linux kernel image is
allocated at DDR 0x500000 and its size is 0x190580 bytes. We will write it to NAND flash offset
0x200000. Then, read the Linux kernel image back to DDR 0x7fc0. At last, use command, bootm,
to boot Linux kernel image.

U-Boot> nand write 0x500000 0x200000 0x190580

NAND write: device 0 offset 0x200000, size 0x190580

 1639808 bytes written: OK

U-Boot> nand read 0x7FC0 0x200000 0x190580

NAND read: device 0 offset 0x200000, size 0x190580

 1639808 bytes read: OK

U-Boot> bootm 0x7FC0

Booting kernel from Legacy Image at 007FC0 ...

 Image Name:

 Image Type: ARM Linux Kernel Image (uncompressed)

 Data Size: 1639744 Bytes = 1.6 MiB

 Load Address: 00007FC0

 Entry Point: 00008000

 Verifying Checksum ... OK

 Loading Kernel Image ... OK

OK

Starting kernel ...

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 67 of 138 Rev. 0.17

 nboot: boot from NAND device
Command format is as below:

U-Boot> help nboot

nboot - boot from NAND device

Usage:

nboot [partition] | [[[loadAddr] dev] offset]

U-Boot>

Below example use nboot to read Linux kernel image from NAND flash offset 0x200000 to DDR
address 0x7fc0. Then boot Linux kernel by command bootm.

U-Boot> nboot 0x7fc0 0 0x200000

Loading from nand0, offset 0x200000

 Image Name:

 Image Type: ARM Linux Kernel Image (uncompressed)

 Data Size: 1639744 Bytes = 1.6 MiB

 Load Address: 00007FC0

 Entry Point: 00008000

U-Boot> bootm 0x7fc0

Booting kernel from Legacy Image at 00007fc0 ...

 Image Name:

 Image Type: ARM Linux Kernel Image (uncompressed)

 Data Size: 1639744 Bytes = 1.6 MiB

 Load Address: 00007FC0

 Entry Point: 00008000

 Verifying Checksum ... OK

 XIP Kernel Image ... OK

OK

Starting kernel ...

 SPI flash commands 4.5.5

U-Boot supports SPI flash relative commands including sf probe/read/write/erase/update. The
command format is as below.

U-Boot> help sf

sf - SPI flash sub-system

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 68 of 138 Rev. 0.17

Usage:

sf probe [[bus:]cs] [hz] [mode] - init flash device on given SPI bus and
chip select

sf read addr offset len - read `len' bytes starting at `offset' to memory
at `addr'

sf write addr offset len - write `len' bytes from memory at `addr' to flash
at `offset'

sf erase offset [+]len - erase `len' bytes from `offset' `+len' round up
`len' to block size

sf update addr offset len - erase and write `len' bytes from memory at
`addr' to flash at `offset'

U-Boot>

Note that you have to run command, sf probe, first before using sf read/write/erase/update.
You can designate SPI speed in argument of sf probe. Below is an example to set SPI clock to
18 MHz.

U-Boot> sf probe 0 18000000

Below is an example to read a Linux kernel image from SPI flash. First, use “sf probe” command
to set SPI clock to 18 MHz. Then, “sf read” command read Linux kernel image stored at SPI flash
offset 0x200000 to DDR 0x7fc0. Finally, use command, bootm, to boot Linux kernel image.

U-Boot> sf probe 0 18000000

SF: Detected EN25QH16-104HIP with page size 64 KiB, total 16 MiB

U-Boot> sf read 0x7FC0 0x200000 0x190580

U-Boot> bootm 0x7FC0

Booting kernel from Legacy Image at 007FC0 ...

 Image Name:

 Image Type: ARM Linux Kernel Image (uncompressed)

 Data Size: 1639744 Bytes = 1.6 MiB

 Load Address: 00007FC0

 Entry Point: 00008000

 Verifying Checksum ... OK

 Loading Kernel Image ... OK

OK

Starting kernel ...

 Memory commands 4.5.6

 md: Memory display.

U-Boot> help md

md - memory display

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 69 of 138 Rev. 0.17

Usage:

md [.b, .w, .l] address [# of objects]

U-Boot>

Below is an example to display the memory content from address 0x10000 to 0x100ff.

U-Boot> md 0x1000

00001000: bffbcf5c 5ffb56ff fcff5f41 ff67760b \....V._A_...vg.

00001010: fcd227e3 dffefeeb 70cf7cb3 dbefc7cb .'.......|.p....

00001020: fbda3e3b eb3e9ebb aa3abc95 e5fbbb2f ;>....>...:./...

00001030: ffbbb319 effe9d7d bfbeeb09 ff7b4f31 }.......1O{.

00001040: f7bf3973 eaff296c e6fce35e 6fffcd7f s9..l)..^......o

00001050: cfd28a65 8cd69f2b efeece87 677f3b8f e...+........;.g

00001060: def67b1d deff7ece 3ffd4003 ffbf32c2 .{...~...@.?.2..

00001070: feef5b67 ffdfa2e6 b7ffe1d3 efffb707 g[..............

00001080: ed2fee4b 6fd852b9 cbf765dd 796dc3de K./..R.o.e....my

00001090: ff9fcff9 ef7bae38 efb0aff3 f8fdf324 8.{.....$...

000010a0: fda577b7 cfbbebcc d5936aa0 088f362f .w.......j../6..

000010b0: ff6bae5a beff9df1 eadded74 3de9fd3d Z.k.....t...=..=

000010c0: dbff79bf 6f32ccf1 89bfa6b1 fbafeebf .y....2o........

000010d0: 77f5b6cd bd7fe7fc 6e2366f2 dff7a5fc ...w.....f#n....

000010e0: f9ff160b edba6d61 fbf88f79 ffef7b76 am..y...v{..

000010f0: 3efabd8c fbfaebe2 6f7d807a ffae9ace ...>....z.}o....

U-Boot>

 mw: Memory write

U-Boot> help mw

mw - memory write (fill)

Usage:

mw [.b, .w, .l] address value [count]

U-Boot>

Below is an example to write 4 words 0s to address 0x10000.

U-Boot> mw 0x10000 0 4

U-Boot>

Display the memory content of address 0x10000. The first 4 words of address 0x10000 are 0s.

U-Boot> md 0x10000

00010000: 00000000 00000000 00000000 00000000

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 70 of 138 Rev. 0.17

00010010: e58c3004 e59c3008 e0843003 e58c3008 .0...0...0...0..

00010020: e1a01105 e1a03305 e0613003 e0833005 3...0a..0..

00010030: e1a02103 e0632002 e1a02102 e0862002 .!... c..!... ..

00010040: e58282d0 e58242d4 e59f3220 e0831001 B.. 2......

00010050: e5913110 e58232d8 e58262c8 e3a0300c .1...2...b...0..

00010060: e58232b4 e59f321c e5823014 e254a000 .2...2...0....T.

00010070: 0a00006e e1a02305 e0422105 e0822005 n....#...!B.. ..

00010080: e1a03102 e0623003 e1a03103 e0863003 .1...0b..1...0..

00010090: e59342d8 e51b0038 eb015a3f e1a03000 .B..8...?Z...0..

000100a0: e59f01e4 e1a01004 e1a0200a eb007cc5 |..

000100b0: ea00005e e2813040 e1a03183 e083300e ^...@0...1...0..

000100c0: e0863003 e2832004 e5822000 e5832008 .0...

000100d0: e08c3001 e283308e e1a03103 e0863003 .0...0...1...0..

000100e0: e2833004 e5837000 e2811001 e2800001 .0...p..........

000100f0: e3500005 1affffee e1a03305 e0433105 ..P......3...1C.

U-Boot>

 cmp: Memory compare.

U-Boot> help cmp

cmp - memory compare

Usage:

cmp [.b, .w, .l] addr1 addr2 count

U-Boot>

Below is an example to compare 64 words of address 0x8000 with address 0x9000.

U-Boot> cmp 0x8000 0x9000 64

word at 0x00008000 (0xe321f0d3) != word at 0x00009000 (0xe59f00d4)

Total of 0 word(s) were the same

U-Boot>

 mtest: simple RAM read/write test

U-Boot> help mtest

mtest - simple RAM read/write test

Usage:

mtest [start [end [pattern [iterations]]]]

U-Boot>

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 71 of 138 Rev. 0.17

Below is an example to test RAM read/write from address 0xa00000 to address 0xb00000 0x20
(32) iterations.

U-Boot> mtest 0xa00000 0xb00000 5a5a5a5a 20

Testing 00a00000 ... 00b00000:

Iteration: 32Pattern A5A5A5A5 Writing... Reading...Tested
32 iteration(s) with 0 errors.

U-Boot>

 USB commands 4.5.7

 usb: USB sub-system

usb: USB sub-system

U-Boot> help usb

usb - USB sub-system

Usage:

usb start - start (scan) USB controller

usb reset - reset (rescan) USB controller

usb stop [f] - stop USB [f]=force stop

usb tree - show USB device tree

usb info [dev] - show available USB devices

usb storage - show details of USB storage devices

usb dev [dev] - show or set current USB storage device

usb part [dev] - print partition table of one or all USB storage devices

usb read addr blk# cnt - read `cnt' blocks starting at block `blk#'

 to memory address `addr'

usb write addr blk# cnt - write `cnt' blocks starting at block `blk#'

 from memory address `addr'

U-Boot>

 usb reset

U-Boot> usb reset

(Re)start USB...

USB0: USB EHCI 0.95

scanning bus 0 for devices... 2 USB Device(s) found

 scanning usb for storage devices... 1 Storage Device(s) found

U-Boot>

 usb start

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 72 of 138 Rev. 0.17

U-Boot> usb start

(Re)start USB...

USB0: USB EHCI 0.95

scanning bus 0 for devices... 2 USB Device(s) found

 scanning usb for storage devices... 1 Storage Device(s) found

U-Boot>

 usb tree

U-Boot> usb tree

USB device tree:

 1 Hub (480 Mb/s, 0mA)

 | u-boot EHCI Host Controller

 |

 |+-2 Mass Storage (480 Mb/s, 200mA)

 Kingston DT 101 II 0019E000B4955B8C0E0B0158

U-Boot>

 usb info

U-Boot> usb info

1: Hub, USB Revision 2.0

 - u-boot EHCI Host Controller

 - Class: Hub

 - PacketSize: 64 Configurations: 1

 - Vendor: 0x0000 Product 0x0000 Version 1.0

 Configuration: 1

 - Interfaces: 1 Self Powered 0mA

 Interface: 0

 - Alternate Setting 0, Endpoints: 1

 - Class Hub

 - Endpoint 1 In Interrupt MaxPacket 8 Interval 255ms

2: Mass Storage, USB Revision 2.0

 - Kingston DT 101 II 0019E000B4955B8C0E0B0158

 - Class: (from Interface) Mass Storage

 - PacketSize: 64 Configurations: 1

 - Vendor: 0x0951 Product 0x1613 Version 1.0

 Configuration: 1

 - Interfaces: 1 Bus Powered 200mA

 Interface: 0

 - Alternate Setting 0, Endpoints: 2

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 73 of 138 Rev. 0.17

 - Class Mass Storage, Transp. SCSI, Bulk only

 - Endpoint 1 In Bulk MaxPacket 512

 - Endpoint 2 Out Bulk MaxPacket 512

U-Boot>

 usb storage

U-Boot> usb storage

 Device 0: Vendor: Kingston Rev: PMAP Prod: DT 101 II

 Type: Removable Hard Disk

 Capacity: 3875.0 MB = 3.7 GB (7936000 x 512)

U-Boot>

 usb dev

U-Boot> usb dev

USB device 0: Vendor: Kingston Rev: PMAP Prod: DT 101 II

 Type: Removable Hard Disk

 Capacity: 3875.0 MB = 3.7 GB (7936000 x 512)

U-Boot>

 usb part

U-Boot> usb part

Partition Map for USB device 0 -- Partition Type: DOS

Part Start Sector Num Sectors UUID Type

 1 8064 7927936 1dfc1dfb-01 0b Boot

U-Boot>

 usb read: read `cnt' blocks starting at block `blk#' to memory address `addr'.
 usb write: write `cnt' blocks starting at block `blk#' from memory address `addr'.
Below is an example that write device 0 block #2, 1 block from 0x10000, and read back device 0
block #2, 1 block to 0x20000. Then compare the memory content of 0x10000 and 0x20000 with
1 block (512 bytes).

U-Boot> usb write 0x10000 2 1

USB write: device 0 block # 2, count 1 ... 1 blocks write: OK

U-Boot> usb read 0x20000 2 1

USB read: device 0 block # 2, count 1 ... 1 blocks read: OK

U-Boot>

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 74 of 138 Rev. 0.17

U-Boot> cmp 0x10000 0x20000 80

Total of 128 word(s) were the same

U-Boot>

 usbboot: boot from USB device

U-Boot> help usb boot

usbboot - boot from USB device

Usage:

usbboot loadAddr dev:part

U-Boot>

Before using usbboot, you have to write Linux kernel image into USB device.
It can be achieved by command, usb write. However, we have to know the start block(sector)
number where Linux kernel image put to. Below we use command, usb part, to show the partition
map of USB device 0.

U-Boot> usb part

Partition Map for USB device 0 -- Partition Type: DOS

Part Start Sector Num Sectors UUID Type

 1 8064 7927936 1dfc1dfb-01 0b Boot

U-Boot>

The start sector (block) number is 369 (0x171). Therefore, we use command, usb write, to write
Linux kernel image to device 0 block # 369(0x171). The block count can be computed as below.
The Linux kernel image is downloaded at 0x200000. It can be downloaded by ICE or TFTP or
other tools. And the Linux kernel size is 1639808 bytes. 1639808/512 = 3202.75. So, it needs
3203 (0xc83) blocks to store the Linux kernel.

U-Boot> usb write 0x200000 1f80 c83

USB write: device 0 block # 8064, count 3203 ... 3203 blocks write: OK

U-Boot>

Now, the Linux kernel is stored in device 0 block # 369(0x171). So, We can load Linux kernel
from USB device 0 partition 1 by command, usbboot.

U-Boot> usbboot 0x7fc0 0:1

Loading from usb device 0, partition 1: Name: usbda1 Type: U-Boot

 Image Name:

 Image Type: ARM Linux Kernel Image (uncompressed)

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 75 of 138 Rev. 0.17

 Data Size: 1639744 Bytes = 1.6 MiB

 Load Address: 00007FC0

 Entry Point: 00008000

U-Boot> bootm 0x7fc0

Booting kernel from Legacy Image at 00007fc0 ...

 Image Name:

 Image Type: ARM Linux Kernel Image (uncompressed)

 Data Size: 1639744 Bytes = 1.6 MiB

 Load Address: 00007FC0

 Entry Point: 00008000

 Verifying Checksum ... OK

 XIP Kernel Image ... OK

OK

Starting kernel ...

Besides, U-Boot supports command fatls and fatload that can access USB device files from file
system. Below is an example that lists USB device file by command fatls and loads USB device
file by command fatload.

U-Boot> fatls usb 0:1

 1639808 vmlinux.ub

1 file(s), 0 dir(s)

U-Boot>

U-Boot> fatload usb 0:1 0x7fc0 vmlinux.ub

reading vmlinux.ub

1639808 bytes read in 90 ms (17.4 MiB/s)

U-Boot>

U-Boot> bootm 0x7fc0

Booting kernel from Legacy Image at 00007fc0 ...

 Image Name:

 Image Type: ARM Linux Kernel Image (uncompressed)

 Data Size: 1639744 Bytes = 1.6 MiB

 Load Address: 00007FC0

 Entry Point: 00008000

 Verifying Checksum ... OK

 XIP Kernel Image ... OK

OK

Starting kernel ...

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 76 of 138 Rev. 0.17

 Environment variable commands 4.5.8

 setenv: set environment variables

U-Boot> help setenv

setenv - set environment variables

Usage:

setenv [-f] name value ...

 - [forcibly] set environment variable 'name' to 'value ...'

setenv [-f] name

 - [forcibly] delete environment variable 'name'

U-Boot>

Below is an example to set environment variable, ipaddr, to 192.168.0.101
And use command, echo, to show the value of ipaddr.

U-Boot> setenv ipaddr 192.168.0.101

U-Boot> echo $ipaddr

192.168.0.101

U-Boot>

 saveenv: save environment variables to persistent storage.

U-Boot> help saveenv

saveenv - save environment variables to persistent storage

Usage:

saveenv

U-Boot>

 env: environment handling commands

U-Boot> help env

env - environment handling commands

Usage:

env default [-f] -a - [forcibly] reset default environment

env default [-f] var [...] - [forcibly] reset variable(s) to their default
values

env delete [-f] var [...] - [forcibly] delete variable(s)

env edit name - edit environment variable

env export [-t | -b | -c] [-s size] addr [var ...] - export environment

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 77 of 138 Rev. 0.17

env import [-d] [-t | -b | -c] addr [size] - import environment

env print [-a | name ...] - print environment

env run var [...] - run commands in an environment variable

env save - save environment

env set [-f] name [arg ...]

U-Boot>

 Decrypt commands 4.5.9

In addition to the original commands U-Boot support. NUC970 U-Boot added a command for
decryption. It supports AES decryption only. The command format is as below.

U-Boot> help decrypt

decrypt - Decrypt image(kernel)

Usage:

decrypt decrypt aes SrcAddr DstAddr Length - Decrypt the image from SrcAddr
to DstAddr with lenth [Length].

Example : decrypt aes 0x8000 0x10000 0x200- decrypt the image from 0x8000
to 0x10000 and lenth is 0x200

decrypt program aes EnSecure - program AES key to MTP and [Enable/Disable]
secure boot.

Example : decrypt program aes 1 - program AES key to MTP and Enable secure
boot.

Example : decrypt program aes 0 - program AES key to MTP but Disable
secure boot.

Note that before enabling secure boot, you have to burn U-Boot with the
same AES key!

Otherwise, your system will be locked!!!
For instance, decrypt a Linux kernel image from 0x200000 to 0x400000 with length 0x190580.
The command is as below.
U-Boot> decrypt aes 0x200000 0x400000 0x190580

U-Boot> decrypt aes 0x800000 0x7fc0 0x190580

The command “decrypt program” can burn AES key to MTP, and set if enable secure boot mode
or not.
For instance, if burn AES key to MTP, but”NOT” enable secure boot, command is:

U-Boot> decrypt program aes 0

If burn AES key to MTP, and also enable secure boot, command is:

U-Boot> decrypt program aes 1

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 78 of 138 Rev. 0.17

Note that before enable secure boot,you have to confirm using Nu-Writer to burn U-Boot
encrypted with the same AES key ,otherwise,your system will be locked and boot failed when you
reset or power-on again,therefore,it must be very carefully to use this command.

 MMC commands 4.5.10

 mmc : MMC sub-system
U-Boot support MMC relative command, include read/write/erase/list/dev.
The command format is as below.

U-Boot> help mmc

mmc - MMC sub system

Usage:

mmc read addr blk# cnt

mmc write addr blk# cnt

mmc erase blk# cnt

mmc rescan

mmc part - lists available partition on current mmc device

mmc dev [dev] [part] - show or set current mmc device [partition]

mmc list - lists available devices

U-Boot>

mmc list : list all mmc device

U-Boot> mmc list

mmc: 0

mmc: 1

mmc: 2

U-Boot>

NUC970 supports mmc device including SD port 0, SD port 1 and eMMC.
User can modify following three definitions in nuc970_evb.h according to your platform.

#define CONFIG_NUC970_SD_PORT0

#define CONFIG_NUC970_SD_PORT1

#define CONFIG_NUC970_EMMC

The default setting enables SD port 0 and SD port 1, eMMC and NAND can not be used at the
same time, NAND is disabled by default setting.
If SD port 0, SD port 1 and eMMC are all enabled, mmc device numbers are as below:
Device number 0 is SD port 0
Device number 1 is SD port 1
Device number 2 is eMMC

If your platform supports SD port 0 and eMMC (doesn’t support SD port 1), you have to disable
the definition CONFIG_NUC970_SD_PORT1 in nuc970_evb.h
The command, mmc list, can see the following result:

U-Boot> mmc list

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 79 of 138 Rev. 0.17

mmc: 0

mmc: 1

U-Boot>

Device number 0 is SD port 0
Device number 1 is eMMC

If your platform supports eMMC (doesn’t support SD port 0 and SD port 1), you have to disable
the definition CONFIG_NUC970_SD_PORT0 and CONFIG_NUC970_SD_PORT1 in
nuc970_evb.h
The command, mmc list, can see the following result:

U-Boot> mmc list

mmc: 0

U-Boot>

Device number 0 is eMMC

Following example is user enable SD port 0, SD port 1 and eMMC.
User set current device to SD port 1 by “mmc dev” command, then use mmclist command to
display SD relative information.

U-Boot> mmc dev 1

mmc1 is current device

U-Boot> mmcinfo

Device: mmc

Manufacturer ID: 3

OEM: 5344

Name: SD02G

Tran Speed: 25000000

Rd Block Len: 512

SD version 2.0

High Capacity: No

Capacity: 1.8 GiB

Bus Width: 4-bit

U-Boot>

Following example is user sets current device to device 0 (SD port 0) by “mmc dev” command.
Use “mmc erase” command to erase SD card block 0x30 and 0x31, and copy data from DDR
address 0x8000 to SD card block 0x30 and 0x31, then read SD card block 0x30 and 0x31 to
DDR 0x500000. Finally compare the data in DDR address 0x8000 with address 0x500000 to
validate SD access.

U-Boot> mmc dev 0

mmc0 is current device

U-Boot> mmc erase 0x30 2

MMC erase: dev # 0, block # 48, count 2 ... 2 blocks erase: OK

U-Boot> mmc write 0x8000 0x30 2

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 80 of 138 Rev. 0.17

MMC write: dev # 0, block # 48, count 2 ... 2 blocks write: OK

U-Boot> mmc read 0x500000 0x30 2

MMC read: dev # 0, block # 48, count 2 ... 2 blocks read: OK

U-Boot> cmp.b 0x8000 0x500000 0x400

Total of 1024 byte(s) were the same

U-Boot>

Following example is user sets current device to devide 2 (eMMC) by “mmc dev” command.
Use “mmc erase” command to erase SD card block 1024 to 2047, and copy data from DDR
address 0x8000 to SD card block 1024 ~ 2047, then read SD card block 1024 ~ 2047 to DDR
0x500000. Finally compare the data in DDR address 0x8000 with address 0x500000 to validate
SD access.

U-Boot> mmc dev 2

mmc2(part 0) is current device

U-Boot> mmc erase 0x400 0x400

MMC erase: dev # 2, block # 1024, count 1024 ... 1024 blocks erase: OK

U-Boot> mmc write 0x8000 0x400 0x400

MMC write: dev # 2, block # 1024, count 1024 ... 1024 blocks write: OK

U-Boot> mmc read 0x500000 0x400 0x400

MMC read: dev # 2, block # 1024, count 1024 ... 1024 blocks read: OK

U-Boot> cmp.b 0x8000 0x500000 0x4000

Total of 16384 byte(s) were the same

U-Boot>

We can access SD/eMMC card by “mmc” command. Besides, we can access the files in
SD/eMMC card by “fatls” and “fatload” command.
Following example use “fatls” command to list the file in SD port 0, then “fatload” command to
read Linux kernel image (vmlinux.ub) to DDR address 0x7fc0,finally boot Linux kernel by “bootm”
command.

U-Boot> fatls mmc 0

 1639808 vmlinux.ub

 0 4gsd.txt

2 file(s), 0 dir(s)

U-Boot> fatload mmc 0 0x7fc0 vmlinux.ub

reading vmlinux.ub

1639808 bytes read in 301 ms (5.2 MiB/s)

U-Boot> bootm 0x7fc0

Booting kernel from Legacy Image at 00007fc0 ...

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 81 of 138 Rev. 0.17

 Image Name:

 Image Type: ARM Linux Kernel Image (uncompressed)

 Data Size: 1639744 Bytes = 1.6 MiB

 Load Address: 00007FC0

 Entry Point: 00008000

 Verifying Checksum ... OK

 XIP Kernel Image ... OK

OK

Starting kernel ...

 MTD commands 4.5.11

 mtdparts : define flash/nand partitions
U-Boot supports MTD partition relative command,including add/del/list.

U-Boot> help mtd

mtdparts - define flash/nand partitions

Usage:

mtdparts

 - list partition table

mtdparts delall

 - delete all partitions

mtdparts del part-id

 - delete partition (e.g. part-id = nand0,1)

mtdparts add <mtd-dev> <size>[@<offset>] [<name>] [ro]

 - add partition

mtdparts default

 - reset partition table to defaults

this command uses three environment variables:

'partition' - keeps current partition identifier

partition := <part-id>

<part-id> := <dev-id>,part_num

'mtdids' - linux kernel mtd device id <-> u-boot device id mapping

mtdids=<idmap>[,<idmap>,...]

<idmap> := <dev-id>=<mtd-id>

<dev-id> := 'nand'|'nor'|'onenand'<dev-num>

<dev-num> := mtd device number, 0...

<mtd-id> := unique device tag used by linux kernel to find mtd device
(mtd->name)

'mtdparts' - partition list

mtdparts=mtdparts=<mtd-def>[;<mtd-def>...]

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 82 of 138 Rev. 0.17

<mtd-def> := <mtd-id>:<part-def>[,<part-def>...]

<mtd-id> := unique device tag used by linux kernel to find mtd device
(mtd->name)

<part-def> := <size>[@<offset>][<name>][<ro-flag>]

<size> := standard linux memsize OR '-' to denote all remaining space

<offset> := partition start offset within the device

<name> := '(' NAME ')'

<ro-flag> := when set to 'ro' makes partition read-only (not used, passed
to kernel)

U-Boot>

mtdparts default set MTD default partition value, the default value is defined in nuc970_evb.h.
The setting is set MTD partition ID to nand0, the three default partitions are u-boot, kernel and
user.
First partition: u-boot, start from 0x0, size is 0x200000.
Second partition: kernel, start from 0x200000, size is 0x1400000.
Third partition: user, start from 0x1600000, size is the rest space.

#define MTDIDS_DEFAULT “nand0=nand0”

#define MTDPARTS_DEFAULT “mtdparts=nand0:0x200000@0x0(u-
boot),0x1400000@0x200000(kernel),-(user)”

mtdparts list all the mtd partitions

U-Boot> mtdparts

device nand0 <nand0>, # parts = 3

 #: name size offset mask_flags

 0: u-boot 0x00100000 0x00000000 0

 1: kernel 0x01400000 0x00100000 0

 2: user 0x06b00000 0x01500000 0

active partition: nand0,0 - (u-boot) 0x00100000 @ 0x00000000

defaults:

mtdids : nand0=nand0

mtdparts: mtdparts=nand0:0x100000@0x0(u-boot),0x1400000@0x100000(kernel),-
(user)

U-Boot>

 UBI commands 4.5.12

 ubi : ubi commands
U-Boot supports UBI relative command, including info/create/read/write.

U-Boot> help ubi

ubi - ubi commands

Usage:

ubi part [part] [offset]

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 83 of 138 Rev. 0.17

 - Show or set current partition (with optional VID header offset)

ubi info [l[ayout]] - Display volume and ubi layout information

ubi create[vol] volume [size] [type] - create volume name with size

ubi write[vol] address volume size - Write volume from address with size

ubi read[vol] address volume [size] - Read volume to address with size

ubi remove[vol] volume - Remove volume

[Legends]

 volume: character name

 size: specified in bytes

 type: s[tatic] or d[ynamic] (default=dynamic)

U-Boot>

ubi part : Display or set current partition

U-Boot> ubi part user

Creating 1 MTD partitions on "nand0":

0x000001500000-0x000008000000 : "mtd=2"

UBI: attaching mtd1 to ubi0

UBI: physical eraseblock size: 131072 bytes (128 KiB)

UBI: logical eraseblock size: 126976 bytes

UBI: smallest flash I/O unit: 2048

UBI: VID header offset: 2048 (aligned 2048)

UBI: data offset: 4096

UBI: attached mtd1 to ubi0

UBI: MTD device name: "mtd=2"

UBI: MTD device size: 107 MiB

UBI: number of good PEBs: 855

UBI: number of bad PEBs: 1

UBI: max. allowed volumes: 128

UBI: wear-leveling threshold: 4096

UBI: number of internal volumes: 1

UBI: number of user volumes: 1

UBI: available PEBs: 17

UBI: total number of reserved PEBs: 838

UBI: number of PEBs reserved for bad PEB handling: 8

UBI: max/mean erase counter: 6/4

U-Boot>

ubi info : display capacity and ubi information

U-Boot> ubi info l

UBI: volume information dump:

UBI: vol_id 0

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 84 of 138 Rev. 0.17

UBI: reserved_pebs 826

UBI: alignment 1

UBI: data_pad 0

UBI: vol_type 3

UBI: name_len 9

UBI: usable_leb_size 126976

UBI: used_ebs 826

UBI: used_bytes 104882176

UBI: last_eb_bytes 126976

UBI: corrupted 0

UBI: upd_marker 0

UBI: name nandflash

UBI: volume information dump:

UBI: vol_id 2147479551

UBI: reserved_pebs 2

UBI: alignment 1

UBI: data_pad 0

UBI: vol_type 3

UBI: name_len 13

UBI: usable_leb_size 126976

UBI: used_ebs 2

UBI: used_bytes 253952

UBI: last_eb_bytes 2

UBI: corrupted 0

UBI: upd_marker 0

UBI: name layout volume

U-Boot>

ubifsmount : mount ubifs volume

U-Boot> help ubifsmount

ubifsmount - mount UBIFS volume

Usage:

ubifsmount <volume-name>

 - mount 'volume-name' volume

U-Boot> ubifsmount ubi0:nandflash

UBIFS: mounted UBI device 0, volume 0, name "nandflash"

UBIFS: mounted read-only

UBIFS: file system size: 103485440 bytes (101060 KiB, 98 MiB, 815 LEBs)

UBIFS: journal size: 5206016 bytes (5084 KiB, 4 MiB, 41 LEBs)

UBIFS: media format: w4/r0 (latest is w4/r0)

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 85 of 138 Rev. 0.17

UBIFS: default compressor: LZO

UBIFS: reserved for root: 5114338 bytes (4994 KiB)

U-Boot>

ubifsls : list files in a directory

U-Boot> help ubifsls

ubifsls - list files in a directory

Usage:

ubifsls [directory]

 - list files in a 'directory' (default '/')

U-Boot> ubifsls

<DIR> 160 Thu Jan 01 00:08:09 1970 tt

U-Boot>

ubifsumount : unmount UBIFS volume

U-Boot> help ubifsumount

ubifsumount - unmount UBIFS volume

Usage:

ubifsumount - unmount current volume

U-Boot> ubifsumount

Unmounting UBIFS volume nandflash!

U-Boot>

 YAFFS2 commands 4.5.13

 yaffs : yaffs commands
U-Boot supports YAFFS commands, including mount/list/mkdir/rmdir/rd/w.
Format is as below:

U-Boot> help

ydevconfig- configure yaffs mount point

ydevls - list yaffs mount points

yls - yaffs ls

ymkdir - YAFFS mkdir

ymount - mount yaffs

ymv - YAFFS mv

yrd - read file from yaffs

yrdm - read file to memory from yaffs

yrm - YAFFS rm

yrmdir - YAFFS rmdir

ytrace - show/set yaffs trace mask

yumount - unmount yaffs

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 86 of 138 Rev. 0.17

ywr - write file to yaffs

ywrm - write file from memory to yaffs

ydevconfig configure YAFFS mount point

U-Boot> ydevconfig

Bad arguments: ydevconfig mount_pt mtd_dev start_block end_block

U-Boot> ydevconfig nand 0 0xb0 0x3ff

Configures yaffs mount nand: dev 0 start block 176, end block 1023 using
inband tags

ydevls list YAFFS mount points

U-Boot> ydevls

nand 0 0x000b0 0x003ff using inband tags, not mounted

ymount mount YAFFS

U-Boot> ymount

Bad arguments: ymount mount_pt

U-Boot> ymount nand

Mounting yaffs2 mount point nandnand

U-Boot> ydevls

nand 0 0x000b0 0x003ff using inband tags, free 0x6573800

yls list the content of YAFFS file system, a mount point is a directory, previous example nand is
a directory

U-Boot> yls

Bad arguments: yls [-l] dir

U-Boot> yls -l nand

lost+found 2032 2 directory

ymkdir make a directory

U-Boot> ymkdir nand/test

U-Boot> yls -l nand

test 2032 257 directory

lost+found 2032 2 directory

yrmdir delete a directory

U-Boot> yrmdir nand/test

U-Boot> yls -l nand

lost+found 2032 2 directory

ywr / ywrm write a file / save a block of memory to a file

U-Boot> ywr nand/wr.bin 0x55 100

Writing value (55) 100 times to nand/wr.bin... done

U-Boot> ywrm nand/wrm.bin 0xe00000 0x1000

U-Boot> yls -l nand

wrm.bin 4096 259 regular file

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 87 of 138 Rev. 0.17

wr.bin 256 258 regular file

lost+found 2032 2 directory

yrd / yrdm read a file / read a file to memory

U-Boot> yrd nand/wr.bin

Reading file nand/wr.bin

Done

U-Boot> yrdm nand/wrm.bin 0x200000

Copy nand/wrm.bin to 0x00200000... [DONE]

yrm delete a file

U-Boot> yls -l nand

wrm.bin 4096 259 regular file

wr.bin 256 258 regular file

lost+found 2032 2 directory

U-Boot> yrm nand/wr.bin

U-Boot> yls -l nand

wrm.bin 4096 259 regular file

lost+found 2032 2 directory

yumount unmounts YAFFS

U-Boot> yumount nand

Unmounting yaffs2 mount point nand

U-Boot> ydevls

nand 0 0x000b0 0x003ff using inband tags, not mounted

4.6 Environment variables

 Environment variables configuration 4.6.1

Environment variables can store in NAND flash or SPI flash, user can modify below two
definitions in nuc970_evb.h:
 CONFIG_ENV_IS_IN_NAND: environment variables are stored in NAND flash
 CONFIG_ENV_IS_IN_SPI_FLASH: environment variables are stored in SPI flash
Note that only one of them can be defined.

User can configure the flash offset address environment variables stored and the space reserved
for environment variables in nuc970_evb.h:
 CONFIG_ENV_OFFSET: the flash offset address environment variables stored
 CONFIG_ENV_SIZE: the space reserved for environment variables

 Default environment variables 4.6.2

U-Boot has some default environment variables. If the variables are not stored in flash, U-Boot
will assign default value to the variables.
Below are the default environment variables.
 baudrate

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 88 of 138 Rev. 0.17

Console baudrate, the value is from CONFIG_BAUDRATE in nuc970_evb.h

 bootdelay
It’s the boot delay time when U-Boot run the command script in bootcmd. Its unit is second.
Before it is countdown to 0, hit any key to stop running script in bootcmd.

 ethact
It sets which Ethernet interface state is active, since nuc970 ethernet driver set device name to
emac, ethact can be set to emac only.

 ethaddr
Ethernet MAC address. ethaddr value is from CONFIG_ETHADDR in nuc970_evb.h

 stderr
Set stderr, default value is serial
 stdin
Set stdin, default value is serial
 stdout
Set stdout, default value is serial

 Command Script 4.6.3

Below are script relative commands
 bootcmd
Whenever U-Boot boots up, U-Boot executes the script in bootcmd.
Following example set bootcmd as: read Linux kernel from SPI flash offset 0x200000 to DDR
address 0x7fc0, and boot Linux kernel.
Remember to save the environment variables to flash.

U-Boot> set bootcmd sf probe 0 18000000\; sf read 0x7fc0 0x200000
0x190580\; bootm 0x7fc0

U-Boot> saveenv

Saving Environment to SPI Flash...

SF: Detected EN25QH16-104HIP with page size 64 KiB, total 16 MiB

Erasing SPI flash...Writing to SPI flash...done

U-Boot>

 bootargs
This argument will be passed to Linux kernel. Below example is to pass the bootargs about
NAND MTD partition to Linux kernel. Finally, remember to save environment variables to NAND
flash.

U-Boot> set bootargs "root=/dev/ram0 console=ttyS0,115200n8
rdinit=/sbin/init mem=64M mtdparts=nand0:0x200000@0x0(u-
boot),0x1400000@0x200000(kernel),-(user)"

U-Boot> saveenv

Saving Environment to NAND...

Erasing Nand...

Erasing at 0xe0000 -- 100% complete.

Writing to Nand... done

U-Boot>

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 89 of 138 Rev. 0.17

 New added environment variable 4.6.4

NUC970 U-Boot adds some new environment variables.
 spimode: defines SPI transmit mode to one-bit or Quad mode.

U-Boot> setenv spimode mode

The parameter “mode” can be 1 or 4.
1: one-bit mode
4: Quad mode
For instance, set SPI mode to Quad mode

U-Boot> setenv spimode 4

If your SPI flash does not support Quad mode, you can set spimode to one-bit mode

U-Boot> setenv spimode 1

Remember to set environment variables to flash.

U-Boot> saveenv

 watchdog: Enable or disable watchdog timer function.

U-Boot> setenv watchdog mode

The parameter “mode” can be on or off.
on: watchdog timer function enabled
off: watchdog timer function disabled
For instance, disable watchdog function

U-Boot> setenv watchdog off

Enable watchdog function

U-Boot> setenv watchdog on

Remember save the environment variables to flash.

U-Boot> saveenv

4.7 mkimage tool

U-Boot supports a number of different image formats that can be downloaded, saved to flash and
executed. The types of such image files supported by U-Boot, include:
 Linux Kernel
 Script files
 Standalone binaries
 RAM disk images
These images are often referred to as an ".ub" files, as that is the file extension name that is
often used to name them.

 Use mkimage to generate Linux kernel image 4.7.1

The mkimage tool is located in tools/mkimage. Below is an example to encapsulate an ARM
Linux kernel binary file (vmlinux.bin). Linux kernel download address is 0x7fc0 and execution

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 90 of 138 Rev. 0.17

address is 0x8000.

u-boot# arm-linux-objcopy -O binary vmlinux vmlinux.bin

u-boot/tools# ./mkimage -A arm -O linux -T kernel -a 0x7fc0 -e 0x8000 -d
vmlinux.bin vmlinux.ub

Image Name:

Created: Fri Aug 8 14:38:39 2014

Image Type: ARM Linux Kernel Image (uncompressed)

Data Size: 1639744 Bytes = 1601.31 kB = 1.56 MB

Load Address: 00007FC0

Entry Point: 00008000

-A: set CPU architecture to arm
-O: set operating system to linux
-T: set image type to kernel
-a: set load address to 0x7fc0
-e: set entry point to 0x8000
-d: set image data from vmlinux.bin

 Checksum calculation (SHA-1 or crc32) 4.7.2

NUC970 adds a new parameter “-S” to calculate Linux kernel checksum.
The original checksum calculation method of mkimage tool is crc32, NUC970 provides another
option, SHA-1, below is an example uses SHA-1 to calculate Linux kernel checksum. Add option
“-S sha1”. Remember to enable CONFIG_NUC970_HW_CHECKSUM in nuc970_evb.h

u-boot/tools# ./mkimage -A arm -O linux -T kernel -S sha1 -a 0x7fc0 –e
0x8000 -d vmlinux.bin vmlinux.ub

Image Name:

Created: Fri Aug 8 14:39:47 2014

Image Type: ARM Linux Kernel Image (uncompressed)

Data Size: 1639744 Bytes = 1601.31 kB = 1.56 MB

Load Address: 00007FC0

Entry Point: 00008000

-A: set CPU architecture to arm
-O: set operating system to linux
-T: set image type to kernel
-a: set load address to 0x7fc0
-e: set entry point to 0x8000
-S: Set checksum calculation to sha1
-d: set image data from vmlinux.bin

If you select crc32 to calculate Linux kernel checksum,below is an example : Added an option
“-S crc32”. Remember to disable CONFIG_NUC970_HW_CHECKSUM in nuc970_evb.h

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 91 of 138 Rev. 0.17

u-boot/tools# ./mkimage -A arm -O linux -T kernel -S crc32 -a 0x7fc0 –e
0x8000 -d vmlinux.bin vmlinux.ub

Image Name:

Created: Fri Aug 8 14:39:47 2014

Image Type: ARM Linux Kernel Image (uncompressed)

Data Size: 1639744 Bytes = 1601.31 kB = 1.56 MB

Load Address: 00007FC0

Entry Point: 00008000

-A: set CPU architecture to arm
-O: set operating system to linux
-T: set image type to kernel
-a: set load address to 0x7fc0
-e: set entry point to 0x8000
-S: Set checksum calculation to crc32
-d: set image data from vmlinux.bin

 AES encrypt 4.7.3

Besides, NUC970 mkimage tool adds AES encrypt function added two new parameters,
 -E AES, Encrypt image. –K, designates the key file that AES encryption uses. Following example
encapsulate and encrypt an ARM Linux kernel image (vmlinux.bin), AES key is in key.dat. Linux
kernel load address is 0x7fc0, execution address is 0x8000.

u-boot/tools# ./mkimage -A arm -O linux -T kernel -a 0x7fc0 -e 0x8000 -E
AES -K key.dat -d vmlinux.bin vmlinux.ub

Image Name:

Created: Fri Aug 8 14:39:47 2014

Image Type: ARM Linux Kernel Image (uncompressed)

Data Size: 1639744 Bytes = 1601.31 kB = 1.56 MB

Load Address: 00007FC0

Entry Point: 00008000

-A: set CPU architecture to arm
-O: set operating system to linux
-T: set image type to kernel
-a: set load address to 0x7fc0
-e: set entry point to 0x8000
-d: set image data from vmlinux.bin
-E: Set encrypt type to AES
-K: Designate the key file that AES encryption uses

There is a file named key.dat in directory tools/, the file content is AES key. User can edit key.dat
to modify key

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 92 of 138 Rev. 0.17

The content of key.dat is as below:
0x34125243
0xc41a9087
0xa14cae80
0xc4c38790
0x672ca187
0xd4f785a1
0x562fa1c5
0x78561198
Each line has 4 bytes, 8 lines total.
Each line starts with 0x, please do not modify it. If you want to modify key, please directly modify
the value after 0x.
Please modify this file in Linux environment,if you edit it in Windows and copy to Linux, you can
use dos2unix tool to transform key.dat,otherwise the AES key for encryption is wrong.

u-boot/tools$ dos2unix key.dat

dos2unix: converting file key.dat to Unix format.

4.8 Security issue

 Encrypt 4.8.1

To protect the security of image file and avoid the hacker, we encrypt image by mkimage tool.
Below is an example for AES encryption.

u-boot# ./mkimage -A arm -O linux -T kernel -a 0x8000 -e 0x8000 -E AES –K
key.dat -d vmlinux.bin vmlinux.ub

 Decrypt 4.8.2

We can also decrypt the image in U-Boot command line,below is an example to decrypt an
encrypted Linux kernel located in address 0x200000 to 0x400000,Linux kernel size is 0x190580.

U-Boot> decrypt aes 0x200000 0x400000 0x190580

 Risk 4.8.3

After the image is decrypted, hacker can use the command “md” to display the memory and know
the image content.

There is a solution for this security issue：

 Disable md command.
Modify include/config_cmd_default.h
Remark the line #define CONFIG_CMD_MEMORY

4.9 Watchdog timer

 Watchdog timer configuration 4.9.1

Modify below two definitions in nuc970_evb.h to enable NUC970 watchdog timer function.

#define CONFIG_NUC970_WATCHDOG

#define CONFIG_HW_WATCHDOG

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 93 of 138 Rev. 0.17

Remark the two definitions will disable NUC970 watchdog timer function.

 Watchdog timer environment variables 4.9.2

When NUC970 watchdog timer configuration is enabled, user can set environment variable
“watchdog” to “off” or “0”, the watchdog timer function will be disabled without modifying
configuration file or recomplation.

U-Boot> set watchdog off

U-Boot> saveenv

Set environment variable “watchdog” to “on” will enable watchdog timer function again.

U-Boot> set watchdog on

U-Boot> saveenv

After modifying the environment variable “watchdog”, remember to use command “saveenv” to
save variable “watchdog” to flash.
If the configuration of watchdog timer in nuc970_evb.h is disabled, it is meaningless to modify
environment variable “watchdog”.

 Watchdog timer period 4.9.3

When Watchdog timer function is enabled and system is idle more than 14 seconds, Watchdog
timer will reset system；Whenever use enter a command (input Enter key), the idle time will be

reset to 0.

4.10 U-Boot LCD

 NUC970 LCD display content 4.10.1

During U-Boot boot up, Nuvoton LOGO and U_Boot relative information is displayed in LCD
panel.

 How to replace LOGO 4.10.2

To change Nuvoton LOGO to another one, if the company name is abc, LOGO file name is
abc.bmp, the steps are as below:
 Put abc.bmp in tools/logos
 Modify tools/Makefile
Search the below three lines,

ifeq ($(VENDOR),nuvoton)

LOGO_BMP= logos/nuvoton.bmp

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 94 of 138 Rev. 0.17

endif

Behind the above three lines, add the following three lines

ifeq ($(VENDOR),abc)

LOGO_BMP= logos/abc.bmp

endif

4.11 GPIO

U-Boot GPIO can be used for LED.
NUC970 U-Boot provides the function to set GPIO. User can access GPIO by NUC970 GPIO
driver interface.

 NUC970 GPIO 4.11.1

NUC970 GPIO port includes port A ~ port J, each port has 16 pins.
Note that GPIO port C pin 15 and GPIO port J pin 5~15 are reserved, please do not use them.
NUC970 U-Boot assign each pin a GPIO number, for instance, GPIO port A pin 0 number is
GPIO_PA0, GPIO port B pin 2 number is GPIO_PB2
User has to pass GPIO number when calling NUC970 GPIO driver function.

 GPIO driver interface 4.11.2

NUC970 provides following GPIO APIs

int gpio_request(unsigned gpio, const char *label);

int gpio_direction_input(unsigned gpio);

int gpio_direction_output(unsigned gpio, int value);

int gpio_get_value(unsigned gpio);

int gpio_set_value(unsigned gpio, int value);

The first parameter of each API is GPIO number.
 gpio_request
Confirm GPIO is in used or not, the second parameter is not used, you can fill in 0.
If the designated GPIO pin is switched to other function (not GPIO), there will be error message.
For instance, when we use GPIO port D0, and calling gpio_request():
gpio_request(GPIO_PD0,NULL);
If port D0 is switched to other function, you will get below error message.
 [gpio_request] Please Check GPIO pin [96], multi-function pins = 0x6
 gpio_direction_input
Set GPIO pin to input mode.
 gpio_direction_output
Set GPIO pin to output mode and output value.
 gpio_get_value
Read GPIO pin value
 gpio_set_value
Set GPIO pin output value.

 Example 4.11.3

Below example set GPIO port G0 ~ port G5 output value to 0x101010.

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 95 of 138 Rev. 0.17

gpio_request(GPIO_PG0,NULL);

gpio_direction_output(GPIO_PG0, 0);

gpio_request(GPIO_PG1,NULL);

gpio_direction_output(GPIO_PG1, 1);

gpio_request(GPIO_PG2,NULL);

gpio_direction_output(GPIO_PG2, 0);

gpio_request(GPIO_PG3,NULL);

gpio_direction_output(GPIO_PG3, 1);

gpio_request(GPIO_PG4,NULL);

gpio_direction_output(GPIO_PG4, 0);

gpio_request(GPIO_PG5,NULL);

gpio_direction_output(GPIO_PG5, 1);

4.12 Network test environment

We need a PC that has static IP address and installed with TFTP/DHCP server application.

 Set static IP address 4.12.1

Choose Local Area Connection (under Control Panel -> Network and Internet -> Network
Connections

 Choose Properties

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 96 of 138 Rev. 0.17

 Choose Internet Protocol Version 4 (TCP/IPv4)

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 97 of 138 Rev. 0.17

 Set static IP address

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 98 of 138 Rev. 0.17

 TFTP and DHCP server 4.12.1

There is a free, open source application, TFTPD32, which includes TFTP and DHCP server. It
can be downloaded by following URL
http://www.jounin.net/tftp-server-for-windows.html

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 99 of 138 Rev. 0.17

Choose Settings to setup TFTP server and DHCP server.
Set base directory for TFTP server.

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 100 of 138 Rev. 0.17

Set DHCP pool definitions. Below is an example to set IP pool start from 192.168.0.102

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 101 of 138 Rev. 0.17

4.13 Notice

U-Boot SPI sub-system uses NUC970 SPI0. Its multi-function pins are B6, B7, B8, B9, B10, and
B11. Hence, you have to check whether these pins are connected.

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 102 of 138 Rev. 0.17

5 Linux Kernel

5.1 The Configuration Interface for the Kernel

Linux supports different kinds of configuration. Users can disable some unnecessary functions to
save resource of kernel system.
To enter the page of Linux configuration, please type “make menuconfig” command in shell.
It’s multi-layer menu in configuration system. In the current page, user can press “up”,
“down”, ”left”, ”right” four keys to control the layer of configuration system. Select kernel function
by pressing “up” or “down” key and select menu function in the bottom of page by pressing “left”
or “right” key. To enter the next layer of configuration page, user can press “enter” key.
There are five functions at the bottom of menu page. User can disable or enable kernel function
by pressing space key when cursor stays at “Select”. The symbol in front of the selection function
“[]” stands for this function is disabled, “[*]” stands for this function is enabled and “[M]” stands for
this function is built as module and can be loaded dynamically.
Menu page can be returned to upper layer by pressing space key when cursor stays at “Exit” at
the bottom of menu page. If it’s at the top layer of configuration system, system will inform user if
wants to save the configuration and exit.
The help screen will show when cursor is at “Help” by pressing space key. To save current
configuration or load old configuration, use can press space key when cursor is at “Save” or
“Load” at the bottom of menu page.
The kernel configuration file will be named “.config” and be saved in the linux-3.10.x directory.

5.2 Default Configuration

There is a default configuration for the NUC970 series chips provided by Nuvoton. Before
modifying any configuration of kernel, we recommend to load the default configuration of kernel
first. User can type “make <mcu name>_defconfig” command to do that. The option “<Mcu
name> can be nuc972, nuc973, nuc976, nuc977. For example, type “make nuc972_defconfig” to
load default configuration of nuc972. Sometimes if system can’t boot up, user can load the
default configuration which is descripted above to recovery kernel to safe status.

5.3 Linux Kernel Configuration

This section introduces the configuration to enable kernel function according to different NUC970
driver or functions.

 Basic Configuration of System 5.3.1

 Mount the module
Some drivers only support dynamic load, for example “USB WiFi driver” or “USB device driver” …
and so on. Please enable the following function to support that. When system is booted up at
shell, user can use “insmod <module name>” to load module.

[*] Enable loadable module support --->

 Remove module
If some module drivers need to be removed by system, please enable the following function to
support module removing. To remove module, user can use “rmmod <module name>” command
to do that.

[*] Enable loadable module support --->

 [*] Module unloading

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 103 of 138 Rev. 0.17

 Boot Options – root file system is based on RAM
Boot option can configure system, including the type of root file system, the size of memory,
baud-rate of uart console… and so on. The following example is a simple configuration and there
are many commands can be supported by kernel. User can refer to the document which is at
Documentation/kernel-parameters.txt.

Boot options --->

 (root=/dev/ram0 console=ttyS0, 115200n8 rdinit=/sbin/init mem=64M)
Default kernel command string

 Kernel command line type (Use bootloader arguments if available)
--->

 Boot Options – root file system is based on YAFFS2 (NAND Flash)
If root file system is at NAND flash and use YAFFS2 file system, user needs to enable YAFFS2
file system (please refer to 5.3.4) and disable RAM file system function.

General setup --->

 [] Initial RAM filesystem and RAM disk (initramfs/initrd) support

The following is an example to boot up YAFFS2 root file system. A YAFFS2 root file system
image (please refer to 3.8.4) needs to be done first and write it to the mtdblock2 in Linux system.

Boot options --->

 (noinitrd root=/dev/mtdblock2 rootfstype=yaffs2 rootflags=inband-tags
console=ttyS0, 115200n8 rdinit=/sbin/init mem=64M) Default kernel command
string

 Kernel command line type (Use bootloader arguments if available)
--->

 Boot Options – root file system is based on JFFS2 (SPI Flash)
If root file system is at SPI flash and use JFFS2 file system, user needs to enable JFFS2 file
system (please refer to 5.3.4) and disable RAM file system function.

General setup --->

 [] Initial RAM filesystem and RAM disk (initramfs/initrd) support

The following is an example to boot up JFFS2 root file system. A JFFS2 root file system image
needs to be done first by mkfs.jffs2 utility and write it to the mtd1 in Linux system

Boot options --->

 (root=/dev/mtdblock1 rw rootfstype=jffs2 console=ttyS0,115200n8
rdinit=/sbin/init mem=64M) Default kernel command string

 Kernel command line type (Use bootloader arguments if available)
--->

 Boot Options – root file system is based on UBIFS (NAND Flash)
If root file system is at NAND flash and use UBIFS file system, user needs to enable UBIFS file
system (please refer to 5.3.4) and disable RAM file system function.

General setup --->

 [] Initial RAM filesystem and RAM disk (initramfs/initrd) support

The following is an example to boot up UBIFS root file system. A UBIFS root file system image
(please refer to 3.8.4) needs to be done first and write it to the mtd2 in Linux system

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 104 of 138 Rev. 0.17

Boot options --->

 (noinitrd ubi.mtd=2 root=ubi0:system rw rootfstype=ubifs
console=ttyS0, 115200n8 rdinit=/sbin/init mem=64M) Default kernel command
string

 Kernel command line type (Use bootloader arguments if available)
--->

 Boot Options – root file system is based NFS (Network File System)
At the development stage of Linux application, user oftern wants to modify testing application.
This method can reduce some development time by mounting NFS rootfs.

Boot options --->

 (noinitrd root=/dev/nfs nfsroot=x.x.x.x:/path_to_nfs_rootfs
ip=y.y.y.y:z.z.z.z:g.g.g.g:m.m.m.m console=ttyS0,115200n8 rdinit=/sbin/init
mem=64M) Default kernel command string

x.x.x.x and z.z.z.z is the server ip, y.y.y.y is the client ip, g.g.g.g is the gateway ip and m.m.m.m
is the net mask.
And user needs to enable network function (please refer to 5.3.2) and the following item
additionally.

[*] Networking support --->

 Networking options --->

 [*] IP: kernel level autoconfiguration

Of course, NFS function must be enabled.

File systems --->

 [*] Network File Systems --->

 <*> NFS client support

 [*] Root file system on NFS

 Network 5.3.2

 TCP/IP
To enable basic network functions, please enable the following configurations.

 [*] Networking support --->

 Networking options --->

 <*> Packet socket

 <*> Unix domain sockets

 [*] TCP/IP networking

 [*] IP: multicasting

 WiFi Wireless
If wireless device is used, user needs to enable the following functions additionally.

[*] Networking support --->

 [*] Wireless --->

 <*> cfg80211 - wireless configuration API

 [*] cfg80211 wireless extensions compatibility

Device Drivers --->

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 105 of 138 Rev. 0.17

 [*] Network device support --->

 [*] Network core driver support

 [*] Wireless LAN --->

 <*> IEEE 802.11 for Host AP (Prism2/2.5/3 and
WEP/TKIP/CCMP)

 Drivers 5.3.3

 Audio Interface
The following is I²S interface configuration:

Device Drivers --->

 <*> Sound card support --->

 <*> Advanced Linux Sound Architecture --->

 <*> ALSA for SoC audio support --->

 <*> SoC Audio for NUC970 series

 <*> NUC970 I2S support for demo board

 I2S Mode Selection (Master Mode) --->

I2S supports master and slave mode, user can decide which mode is used by selecting in the
configuration menu.
If I2S function is enabled, NAU8822 codec driver is also enabled automatically. In order to use
I2S with audio codec function well, user needs to enable I2C function at the same time.
If audio application is wrote by old OSS architecture, user can enable the following two functions
to do that. User can refer to the example in the BSP which source code is at
BSP/applications/demos/alsa_audio.

Device Drivers --->

 <*> Sound card support --->

 <*> Advanced Linux Sound Architecture --->

 <*> OSS Mixer API

 <*> OSS PCM (digital audio) API

 Cryptographic Accelerator
In order to support Cryptographic Accelerator function, user needs to enable PF_KEY sockets
function support in Networking support menu page.

[*] Networking support --->

 Networking options --->

 <*> PF_KEY sockets

Then enable Cryptographic API related functions.

Cryptographic API --->

 <*> Userspace cryptographic algorithm configuration

 [*] Disable run-time self ests

 <*> Software async crypto daemon

 <*> User-space interface for hash algorithm

 <*> User-space interface for symmetric key cipher algorithms

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 106 of 138 Rev. 0.17

 [*] Hardware crypto devices --->

 <*> Support for NUC970 Cryptographic Accelerator

NUC970 Cryptographic Accelerator function supports AES, DES and 3-DES crypto algorithm. It
also supports SHA and HMAC hash algorithm. User can refer to the example named crypto
(source is at BSP/applications/demos/crypto directory)

 DMA
DMA function is supported by NUC970 series chip. In order to support it in kernel, user needs to
enable “NUC970 DMA support” in “DMA Engine support” menu page.
User can learn DMA functions in kernel by referring to source which is at linux-
3.10.x/drivers/dma/dmatest.c. A test client will be also enabled by enabling “DMA Test Client”
function, it’s a shortcut to understand the procedure of DMA in kernel.

Device Drivers --->

 [*]DMA Engine support --->

 <*> NUC970 DMA support

 <*> DMA Test client

 User space memory management
If user wants to get a physical and virtual address of memory by enabling this user space
memory management function.

Device Drivers --->

 Character devices --->

 [*] Support for /dev/nuc970-mem

 Ethernet
NUC970 series support two Ethernet ports. They can be enabled simulataniously. To support
network port, PHY driver also needs to be enabled additionally.
The PHY chip on the development board is provided by ICPlus, the configuration will need to be
modified if different PHY is used.

Device Drivers --->

 [*] Network device support --->

 <*>Dummy net driver support

 [*] Ethernet driver support --->

 <*> Nuvoton NUC970 Ethernet MAC 0

 <*> Nuvoton NUC970 Ethernet MAC 1

 -*- PHY Device support and infrastructure --->

 <*> Drivers for ICPlus PHYs

 Etimer
When Linux kernel runs, it uses basic timer function of NUC970 to be timer. NUC970 also
supports four enhanced timers which can output 50% duty cycle or capture function. Four
channel of Etimer can be controlled individually.
The following is an example which Etimer channel 0 and channel 1 are as output by general
purpose pin PC.6 and PC.8. And channel 2 and channel 3 are as capture pins by PC.11 and
PC.13.
If the channel is unused, select the function to “No output” or “No input”.

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 107 of 138 Rev. 0.17

Device Drivers --->

 Misc devices --->

 <*> NUC970 Enhance Timer (ETIMER) support

 NUC970 ETIMER channel 0 toggle output pin (Output to PC6) -
-->

 NUC970 ETIMER channel 0 capture input pin (No input) --->

 NUC970 ETIMER channel 1 toggle output pin (Output to PC8) -
-->

 NUC970 ETIMER channel 1 capture input pin (No input) --->

 NUC970 ETIMER channel 2 toggle output pin (No output) --->

 NUC970 ETIMER channel 2 capture input pin (Input from PC11)
--->

 NUC970 ETIMER channel 3 toggle output pin (No output) --->

 NUC970 ETIMER channel 3 capture input pin (Input from PC13)
--->

Application can control etimer function by ioctl() function. The driver supports toggle out, tiger
counting mode and free counting mode functions now.
The value captured by PWM at capture mode (trigger counting mode and free counting mode)
can be read back by using read() function. The unit of value is us, it stands for time interval
between two triggers. No matter using toggle out or capture mode, the unit is us.
User can refer to example code in the BSP (source code path is at
BSP/applications/demos/etimer) to develop the related application.

 Smartcard
NUC970 series has two smartcard interfaces that comply with ISO-7816 and EMV 2000
specification. If the system needs to access smartcard, please refer to the kernel configuration
below to enable smartcard driver. This driver supports both T = 0 and T = 1 protocols. The card
detection level and power-on level, which is depend on the on board circuit and card slot design
can be configured individually. Besides, ether Port I or Port G can be selected for smartcard
interface 0. When enable Perform EMV check checkbox, the driver will perform a more strict
protocol check comply with EMV 2000, so some smartcards will be reported as faliuare cards.

Device Drivers --->

 Misc devices --->

 <*> NUC970 Smartcard Interface support

 [] Perform EMV check

 [*] NUC970 SC0 support

 NUC970 SC0 pin selection (Use port I) --->

 NUC970 SC0 CD pin config (CD high as card insert) --->

 [] Inverse SC0 power pin level

 [*] NUC970 SC1 support

 NUC970 SC1 CD pin config (CD high as card insert) --->

 [] Inverse SC1 power pin level

User applications can control smartcard using ioctl() function call. Below listed the commands
support by smartcard driver and their purpose. User can refer to example code in the BSP
(source code path is at BSP/applications/demos/sc) for the usage of these commands.
SC_IOC_GETSTATUS: Check slot staus, for example card inserted or removed..
SC_IOC_ACTIVATE: Activate smartcard, report ATR length if success.

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 108 of 138 Rev. 0.17

SC_IOC_READATR: Read the ATR (Answer to reset) of activated smartcard.
SC_IOC_DEACTIVATE: Deactivate smartcard.
SC_IOC_TRANSACT: Send ADPU command and read response through sc_transact structure.

 GPIO
In order to support GPIO function controlled by kernel, please enable “NUC970 GPIO support”
and “/sys/class/gpio/…”function.

Device Drivers --->

 [*] GPIO Support --->

 [*] /sys/class/gpio/... (sysfs interface)

 <*> NUC970 GPIO support

The number of each GPIO pin will be descripted at the following.
Driver will keep 32 numbers for each group of GPIO from port A to port J. So the number for the
GPIOA will be 0x000~0x01F, GPIOB will be 0x020~0x03F, GPIOC will be 0x040~0x05F, GPIOD
will be 0x060~0x07F, GPIOE will be 0x080~0x09F, GPIOF will be 0x0A0~0x0BF, GPIOG will be
0x0C0~0x0DF, GPIOH will be 0x0E0~0x0FF, GPIOI will be 0x100~0x11F and GPIOJ will be
0x120~0x13F.
Application can control each GPIO port by using sysfs. The following is the description of GPIO
action based on sysfs interface.

 /sys/class/gpio/export : which GPIO pin will be exported
 /sys/class/gpio/unexport: which GPIO pin will be un-exported
 /sys/class/gpio/gpio0/direction : set GPIOA0 direction to in or output
 /sys/class/gpio/gpio0/value : set or read the value to/from GPIOA0

The following is an example to let GPIOA0 output high:

$ echo 0 > /sys/class/gpio/export

$ echo out >/sys/class/gpio/gpio0/direction

$ echo 1 >/sys/class/gpio/gpio0/value

User also can refer to the example which source code is at BSP/applications/demos/gpio.
The driver can also control GPIO pin by the following steps.
 Add #inlcude <linux/gpio.h> in the target driver.
 Decide which GPIO pin will be use according to the definition in the arch\arm\mach-

nuc970\inlcude\mach\gpio.h.
Take NUC970_PC7 GPIO pin as example.
 Set to input mode gpio_direction_input(NUC970_PC7);
 Set to output mode and value gpio_direction_output(NUC970_PC7,1);
 Set to output high gpio_set_value(NUC970_PC7, 1);
 Set to output low gpio_set_value(NUC970_PC7, 0);
 Read the value gpio_get_value(NUC970_PC7);
 Check if GPIO is in use gpio_request(NUC970_PC7, "NUC970_PC7");
 Get the GPIO interrupt number: gpio_to_irq(NUC970_PC7);

Example:

static irqreturn_t PC7IntHandler(int irq, void *dev_id)

{

printk(KERN_INFO "PC7IntHandler:irq=%d \n",irq);

 return IRQ_HANDLED;

}

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 109 of 138 Rev. 0.17

int xxx_init(void)

{

int ret,irqno;

ret = gpio_request(NUC970_PC7, "NUC970_PC7");

if (ret) printk("NUC970_PC7 failed ret=%d\n",ret);

irqno=gpio_to_irq(NUC970_PC7);

request_irq(irqno, PC7IntHandler,

 IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING,

 "NUC970_PC7",

 NULL);

}

 Use GPIO to simulate I²C interface
User can use GPIO to simulate I2C function. Please enable the following function to do that.

Device Drivers --->

<*> I2C support --->

I2C Hardware Bus support --->

<* > GPIO-based bitbanging I2C

User can select I2C pin by modifying i2c_gpio_adapter_data structure in arch/arm/mach-
nuc970/dev.c. For example, .sda_pin = NUC970_PG1, .scl_pin = NUC970_PG0 will use PG0 as
SCL pin and PG1 will be SDA pin.

 I²C
The configuration of I²C is list as following:

Device Drivers --->

 <*> I2C support --->

 I2C Hardware Bus support --->

 <*> NUC970 I2C Driver for Port 0

 <*> NUC970 I2C Driver for Port 1

 NUC970 I2C1 pin selection (Port G) --->

There are many groups can be select for I2C port 1, like GPIO port-B, port-G, port-H or port-I.
If I2C function support is selected in kernel configuration, kernel will use build in I2C interface of
NUC970 to communicate with other device.
The BSP builds in five I2C port 0 client devices. There are OV7725, OV5640, NT99050,
NT99141 and NAU8822 by default. User can modify those devices to I2C port1 by modifying
nuc970_i2c_client1 structure in arch/arm/mach-nuc970/dev.c.

 LCD
To enable LCD function support, please enable the following function in kernel configurations.

Device Drivers --->

 Graphics support --->

 <*> Support for frame buffer devices --->

 [*] NUC970 LCD framebuffer support

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 110 of 138 Rev. 0.17

 NUC970 LCD panel selection (800x480 5-Inch Color TFT
LCD) --->

LCD source format (RGB888 support) --->

 Console display driver support --->

 <*> Framebuffer Console support

There is a LCD display screen in on development board which resolution is 800x480 and use 24-
bit data bus connected with NUC970 LCD interface. So the color of this display screen is
RGB888(24-bit). Color depth can be adjusted according to user space application.
To display Linux content on the LCD screen, please enable the following functions.

[*] Bootup logo --->

[*] Standard 16-color Linux logo

[*] Standard 224-color Linux logo

There is an example demonstrated the operations of frame buffer which source code is at
BSP/applications/demos/lcm directory.

 2D Graphic Engine
NUC970 supports 2D graphic drawing function like line, rectangle, rotation, scale up/down and
BitBlt.

Device Drivers --->

 Generic Driver Options --->

 Misc devices --->

 <*> NUC970 2D support

 MTD NAND flash
To enable NAND flash function, user needs to enable the following function in kernel
configuration. There are two groups of pin can be selected when using NAND flash interface.
There are GPIO port C and port I, it depends on the connection of hardware on board.

Device Drivers --->

 Generic Driver Options --->

 <*> Nuvoton NUC970 FMI function selection

 Select FMI device to support (Support MTD NAND Flash) --->

 -*- Memory Technology Device (MTD) support --->

 <*> Command line partition table parsing

 <*> Caching block device access to MTD devices

 -*- NAND Device Support --->

 -*- Nuvoton NUC970 MTD NAND --->

 NUC970 NAND Flash pin selection (Port C) --->

It’s necessary to enable “Command line partition table parsing” function when the basic
configuration of flash driver is passed from U-Boot.
The default configuration of flash driver will partition MTD into three blocks, there are
/dev/mtdblock0, /dev/mtdblock1, /dev/mtdblock2 when system boots up.
The first block is the space for the U-Boot, second one is for the kernel and the last one is for
mounting YAFFS2 or UBIFS.
If user wants to modify the block size or increase or decrease number of partition, please modify
uboot/include/nuc970_evb.h or drivers/mtd/nand/nuc970_nand.c.

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 111 of 138 Rev. 0.17

 PWM
To enable PWM function, user needs to enable the following functions. The PWM pin maybe
needs to change according to hardware connection.
“No output” is stand for those unused PWM channels.

Device Drivers --->

 [*] Pulse-Width Modulation (PWM) Support --->

 <*> NUC970 PWM support

 NUC970 PWM channel 0 output pin (Output from PB2) --->

 NUC970 PWM channel 1 output pin (Output from PB3) --->

 NUC970 PWM channel 2 output pin (No output) --->

 NUC970 PWM channel 3 output pin (No output) --->

This section will descript PWM control method by using sysfs. After system boots up, there are
four PWM (pwmchip0~3) in /sys/class/pwm directory. Each group stands for one PWM channel.
Before using it, enter target PWM directory and execute “echo 0 > export” command to enable
this PWM channel. If enable success, there is a pwm0 directory will be created and user can
control this PWM channel.
There are some files in the new created directory, their meaning is list as the following table.

File Name Purpose

period Control cycle, which the unit is ns. The shortest time supported by
the driver is us.
Example (control cycle is 20us)
$ echo 20000 > period

duty_cycle Set duty cycle of PWM, which the unit is ns. The shortest time
supported by the driver is us.
Example (duty cycle is 15us)
$ echo 15000 > duty_cycle

polarity Set polarity, it can be normal or inverse output.
Example:
Normal output: $ echo normal > polarity
Inverse output:$ echo inversed > polarity

enable Enable or disable function.
Example:
Enable function: $echo 1 > enable
Disable function: $echo 0 > enable

The following is a PWM0 example which control cycle is 300us and duty cycle is 33%.

$ cd sys/class/pwm

$ ls

pwmchip0 pwmchip1 pwmchip2 pwmchip3

$ cd pwmchip0

$ ls

device export npwm power subsystem uevent unexport

$ echo 0 > export

$ ls

device npwm pwm0 uevent

export power subsystem unexport

$ cd pwm0/

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 112 of 138 Rev. 0.17

$ ls

duty_cycle enable period polarity power uevent

$ echo 1 > enable

$ echo 300000 > period

$ echo 100000 > duty_cycle

 Ralink RT3070 802.11 WiFi
To support RT3070 USB WiFi module, user needs to enable wireless network function, USB
host, loadable module support and the following function.

Generic Driver Options -->

[*] Contiguous Memory Allocator

And add the additional command in boot command.

coherent_pool=2M

The RT3070 driver source code is in
BSP/applications/DPO_RT3070_LinuxSTA_V2.3.0.2_20100412 directory. The output after
compiling is kernel module and can be loaded dynamically.
Before compiling the source code, user needs to modify Makefile like the following in the source
file directory.

ifeq ($(PLATFORM),SMDK)

LINUX_SRC = /home/bhushan/itcenter/may28/linux-2.6-samsung

CROSS_COMPILE = /usr/local/arm/4.2.2-eabi/usr/bin/arm-linux-

endif

ifeq ($(PLATFORM),NUC900)

LINUX_SRC = /home/andy/hdb/linux_kernel/linux-2.6.35.y

CROSS_COMPILE = arm-linux-

endif

ifeq ($(PLATFORM),NUC970)

LINUX_SRC = /PATH_TO_LINUX_KERNEL/linux-3.10.x

CROSS_COMPILE = arm-linux-

endif

After compiling, module driver (rt39070sta.ko) will be output. To use this driver, RT2870STA.dat
file will also need to copy to root file system etc/Wireless/RT2870STA directory.

$ ls

chips Makefile rt3070sta.ko

common os sta

include README_STA_usb sta_ate_iwpriv_usage.txt

iwpriv_usage.txt RT2870STACard.dat tools

LICENSE_ralink-firmware.txt RT2870STA.dat

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 113 of 138 Rev. 0.17

The usage of this driver is described as following,
1. Load driver module by using insmod command.

$ insmod rt3070.ko

2. Enable wireless interface

$ ifconfig ra0 up

3. Connect to wireless AP by using wireless utility included in BSP.
4. Use WEP method to connect

$ iwconfig ra0 essid "name of AP"

$ iwconfig ra0 key open

$ iwconfig ra0 key “secret key”

5. Use WPA-PSK method to connect

$ iwpriv ra0 set NetworkType=Infra

$ iwpriv ra0 set AuthMode=WPAPSK

$ iwpriv ra0 set EncrypType=TKIP

$ iwpriv ra0 set WPAPSK=”secret key”

$ iwpriv ra0 set SSID=“name of AP”

6. Use WPA2-PSK method to connect

$ iwpriv ra0 set NetworkType=Infra

$ iwpriv ra0 set AuthMode=WPA2PSK

$ iwpriv ra0 set EncrypType=AES

$ iwpriv ra0 set WPAPSK=”secret key”

$ iwpriv ra0 set SSID=“name of AP”

After successful connection with wireless AP, user can set static IP or use following command to
get IP from DHCP server.

$ udhcpc –i ra0

 Realtek RTL8188 802.11 WiFi
To support RTL8188 USB WiFi module, user needs to enable wireless network function, USB
host, loadable module support and the following function.

 [*] Networking support --->

-*- Wireless --->

 <*> Nuvoton external WiFi driver support

The usage of this driver is described as following,
1. Load driver module by using insmod command.

$ insmod rtl8188eu.ko

2. Enable wireless interface

$ ifconfig lo up

$ ifconfig wlan0 up

3. Use wpa_supplicant utility to connect with wireless AP

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 114 of 138 Rev. 0.17

$./wpa_supplicant –Dwext –i wlan0 –c <config file> -B

Wpa_supplicant needs configuration file, the following are examples of configuration file for it.

network={

 ssid="TESTTEST"

 proto=WPA

 key_mgmt=WPA-PSK

 pairwise=CCMP

 psk="ZZZZZZZZ"

}

NOTE: Nuvoton cannot provide RTL8188 driver source code.
 RS232, RS485, IrDA
NUC970 series support 11 serial ports which can be configured individually. Please follow the
instruction below to enable serial port function.
User can enable or disable each port on configuration page. Most of the ports have various GPIO
pins can be selected except UART0, UART3 and UART5.
The UART0 is kept for console and user doesn’t need to configure it.

Device Drivers --->

 Character devices --->

 Serial drivers --->

 [*] NUC970 serial support

 [*] NUC970 UART1 support

 NUC970 UART1 pin selection (Tx:PE2, Rx:PE3) --->

 [*] NUC970 UART2 support

 NUC970 UART2 pin selection (Tx:PF11, Rx:PF12) --->

 [*] NUC970 UART3 support

 [*] NUC970 UART4 support

 NUC970 UART4 pin selection (Tx:PC10, Rx:PC11) --->

 [*] NUC970 UART5 support

 [*] NUC970 UART6 support

 NUC970 UART6 pin selection (Tx:PB2, Rx:PB3) --->

 [*] NUC970 UART7 support

 NUC970 UART7 pin selection (Tx:PG4, Rx:PG5) --->

 [*] NUC970 UART8 support

 NUC970 UART8 pin selection (Tx:PE10, Rx:PE11) --->

 [*] NUC970 UART9 suppor

 NUC970 UART9 pin selection (Tx:PH2, Rx:PH3) --->

 [*] NUC970 UART10 support

 NUC970 UART10 pin selection (Tx:PB10, Rx:PB11) ---
>

 [*] Console on NUC970 serial port

If serial port is configured as IrDA function, user needs to enable serial port function and IrDA

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 115 of 138 Rev. 0.17

function additionally like the following items.

[*] Networking support --->

 <*> IrDA (infrared) subsystem support --->

 Infrared-port device drivers --->

 <*> NUC970 SIR on UART

 SD Card
To enable SD interface, user needs to enable the following functions. NUC970 series support two
SD card interface and BSP only supports one of them now (can’t operate both of them). If SD1 is
used, user needs to select which GPIO pins to be used. The GPIO pins can be Port E, Port H or
Port I.

Device Drivers --->

 <*>MMC/SD/SDIO card support --->

 <*> MMC block device driver

 <*> Use bounce buffer for simple hosts

 <*> Nuvoton NUC970 SD Card support

 NUC970 SD port selection (SD1) --->

 NUC970 SD1 pin selection (Port E) --->

After system booting, if any card is detected the device mmcblk0 will be create in /dev directory. If
more than one partition are created in the card, the device will be created sequentially, like
mmcblk0, mmcblk1 and so on

 SPI
NUC970 series support two SPI interfaces. They can be enabled individually or not. The following
is description for configuring two SPI interfaces.

Device Drivers --->

 [*] SPI support --->

 <*> Nuvoton NUC970 Series SPI Port 0

 NUC970 SPI0 pin selection (Normal mode) --->

 <*> Nuvoton NUC970 Series SPI Port 1

 NUC970 SPI1 pin selection (Port B – Normal mode) --->

There are normal (4-pin) or quad (6-pin) mode can be selected for the SPI0. Normal mode quad
mode in SPI1 can be selected at GPIO port B or port I.
If SPI flash device is also used, user needs to enable MTD function like the following items.

Device Drivers --->

 <*> Memory Technology Device (MTD) support --->

 <*> Caching block device access to MTD devices

 Self-contained MTD device drivers --->

 <*> Support most SPI Flash chips (AT26DF, M25P, W25X, ...)

User also needs to enable JFFS2 file system functions in order to use SPI flash device correctly.
The configuration of JFFS2 is descripted in the file system section. User can refer to it for more
detail.

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 116 of 138 Rev. 0.17

If user wants to use new SPI flash device which is not included in BSP, it’s necessary to modify id
table in driver and it can be identified be kernel correctly.
Please modify the m25p_ids structure in drivers/mtd/devices/m25p80.c file.

static const struct spi_device_id m25p_ids[] = {

/* Atmel -- some are (confusingly) marketed as "DataFlash" */

{ "at25fs010", INFO(0x1f6601, 0, 32 * 1024, 4, SECT_4K) },

{ "at25fs040", INFO(0x1f6604, 0, 64 * 1024, 8, SECT_4K) },

...

{ "en25qh16", INFO(0x1c7015, 0, 64 * 1024, 32, 0) },

...

{ "cat25128", CAT25_INFO(2048, 8, 64, 2) },

 { },

};

And nuc970_spi_flash_data structure also needs to be modified for the same purpose.
The string (name) at type argument must be the same with the first argument of m25p_ids
structure otherwise system can’t recognize it correctly.

static struct flash_platform_data nuc970_spi_flash_data = {

 .name = "m25p80",

 .parts = nuc970_spi_flash_partitions,

 .nr_parts = ARRAY_SIZE(nuc970_spi_flash_partitions),

 .type = "en25qh16",

};

If user wants to modify partition number of SPI flash, nuc970_spi_flash_partitions structure in
arch/arm/mach-nuc970/dev.c file also needs to be modified.

static struct mtd_partition nuc970_spi_flash_partitions[] = {

 {

 .name = "SPI flash",

 .size = 0x0200000,

 offset = 0,

 },

};

User can use mkfs.jffs2 utility to generate jffs2 image.

mkfs.jffs2 -e 0x10000 -r jffs2directory -o image.jffs2

Note that the “-e” argument (erase block size) must be the same with flash device, otherwise
kernel will mount fail.
After generating image, use NuWriter utility to burn the image to address 0x200000 of flash.

 USB host
To enable USB Host function, please check “USB support” in “Device Drivers” menu. NUC970
USB Host equips with EHCI (USB 2.0) and OHCI (USB1.1) Host controllers. All of the following

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 117 of 138 Rev. 0.17

items must be checked to enable both Host controllers.

Device Drivers --->

 [*] USB support --->

 <*> Support for Host-side USB

 <*> EHCI HCD (USB 2.0) support

 <*> NUC970 EHCI (USB 2.0) support

 NUC970 USB Host port power pin select (No USBH_PPWRx and
USBH_OVRCUR) --->

 <*> OHCI HCD support

 [*] NUC970 OHCI (USB 1.1) support

According to target NUC970 chip’s pin configuration, select the corresponding multi-function pin
setting.

[] PE.14 and PE.15 for USBH_PPWR0/1, PH.1 for USBH_OVRCUR

[] PF.10, PH.1 for USBH_OVRCUR

[] No USBH_PPWRx, PH.1 for USBH_OVRCUR

[X] No USBH_PPWRx and USBH_OVRCUR

If target board’s USB port power is controlled by a Power Switch Controller, NUC970 must have
USBH_PPWRx and USBH_OVRCUR pins to communicate with it. Depend on the target NUC970
chip’s pin configuration, USB Host port0 and port1 power can be controlled by PE.14 and PE.15
respectively; or both be controlled by PF.10. PH.1 is dedicated assigned to USBH_OVRCUR for
over-current detection.
If VBUS of USB Host ports are connected to +5V directly, USBH_PPWRx pins are not required
any more. In this condition, USBH_PPWRx can be configured as GPIO pins and user must select
“No USBH_PPWRx” items from this menu.
User can also select the last item “No USBH_PPWRx and USBH_OVRCUR” to release
USBH_PPWRx and USBH_OVRCUR pins. In this condition, user can obtain 2 or 3 free GPIO
pins, but take the risk of being unaware of over-current dangerous.

 USB mass storage class device support
Besides selecting NUC970 USB Host controller driver, user may have to select supporting device
classes. For example, if user want to support mass storage device, it’s necessary to enable
“SCSI device support” first. After enabled SCSI device support, “USB Mass Storage Support”
option will be present in “USB support” menu. Select it to enable Mass Storage Device
supporting.

Device Drivers --->

 SCSI device support --->

 <*> SCSI device support

 <*> legacy / proc/scsi/ support

 <*> SCSI disk support

 <*> SCSI media changer support

 [*] Asynchronous SCSI scanning

 [*] SCSI low-level drivers

 [*] USB support --->

 <*> USB Mass Storage Support

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 118 of 138 Rev. 0.17

 USB host and HID device
To support HID class devices, such as USB mouse and USB keyboard, except to enable USB
Host function, user must also enable “HID bus support” and “Input device support”. As the
following:

Device Drivers --->

 HID bus support --->

 <*> User-space I/O driver support for HID subsystem

 <*> Generic HID driver

 USB HID support --->

 <*> USB HID transport layer

 Input device support --->

 <*> Mouse interface

 [*] Provide legacy /dev/psaux device

 <*> Event interface

 [*] Keyboards --->

 <*> AT keyboard

 [*] Mice --->

 <*> PS/2 mouse

 USB Device

Device Drivers --->

 [*] USB support --->

 <*> USB Gadget Support --->

 USB Peripheral Controller --->

 <*> NUC970 USB Device Controller

 <M> USB Gadget Driver

 <M> Mass Storage Gadget

After compiling kernel, three driver module files will be outputted. (fs/configfs/configfs.ko,
drivers/usb/gadget/libcomposite.ko and drivers/usb/gadget/g_mass_storage.ko)
User needs to copy those file to rootfs or somewhere they can be accessed by system. (Like
USB mass storage device)
The following is an example by using USB mass storage gadget function.

$ insmod configfs.ko

$ insmod libcomposite.ko

$ insmod g_mass_storage.ko file=/dev/mmcblk0p1 stall=0 removable=1

 Video Capture
To support video capture function, user needs to enable “Cameras/video grabbers support” item
first and enable “NUC970 Video-in support” in “Encoders, decoders, sensors and other helper
chips” item. Finally, user can select model of video capture device. BSP supports OV7725,
OV5640, NT99050 and NT99141 drivers now.

Device Drivers --->

<*> I2C support --->

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 119 of 138 Rev. 0.17

I2C Hardware Bus support --->

<*> GPIO-based bitbanging I2C

 [*] Multimedia support --->

 [*] Camera/video grabbers support

 [*] Media Controller API

 [*] V4L2 sub-device userspace API

 [*] V4L platform devices --->

 Encoders, decoders, sensors and other helper chips --->

 <*> Nuvoton NUC970 Video-In Support

(3) Max frame buffer

 (24000000) Video frequency

 Nuvoton NUC970 Image Sensor Selection (NT99141) --->

If I2C interface is used by video capture device to configure arguments, I2C function also needs
to be enabled first. User can refer to I2C section to do that.
The V4L2 API is supported by video capture driver in BSP and user can refer to the example in
BSP/applications/demos/cap directory.

 Watchdog Timer
To support watchdog timer function, please enable the following items.
Timeout period in default is 2.03 seconds and this time can be modified via ioctl() command
function (WDIOC_SETTIMEOUT) by application program.
There are three different time cycles can be supported by watchdog driver. If command argument
is smaller than 2 and the timeout period will be 0.53 second. If command argument is between 2
to 8 and timeout period will be 2.03 seconds. And if argument is larger than 8 and timeout period
will be 8 seconds. There is an example in BSP/applications/demos/wdt directory for user to
reference.

Device Drivers --->

 [*] Watchdog Timer Support --->

 <*> Nuvoton NUC970 Watchdog Timer

 Window Watchdog Timer
Please enable the following items to support window watchdog timer function.

Device Drivers --->

 [*] Watchdog Timer Support --->

 <*> Nuvoton NUC970 Window Watchdog Timer

There are two different between window watchdog timer and watchdog timer. First, the
configuration of window watchdog timer cannot be modified after enabling its function. Second,
window watchdog timer only can be reset in specific time slot, but watchdog timer can be reset at
any time if timeout doesn’t occur. In application, user needs to use WDIOC_GETTIMELEFT
ioctl() argument to get the available time to reset. If return value is 0 and application can use
WDIOC_KEEPALIVE argument to let system reset otherwise system will be reset right now.
An example code is in BSP/applications/demos/wwdt for reference.

 Keypad

Device Drivers --->

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 120 of 138 Rev. 0.17

 Input device support --->

 [*] Keyboards --->

 <*> NUC970 Matrix Keypad support

 NUC970 matrix keypad pin selection (Keypad pins are 4x8
matrix PA pin) --->

 () Keypad pins are 4x2 matrix PA pin

 () Keypad pins are 4x4 matrix PA pin

 (X) Keypad pins are 4x8 matrix PA pin

 () Keypad pins are 4x2 matrix PH pin

 () Keypad pins are 4x4 matrix PH pin

 () Keypad pins are 4x8 matrix PH pin

The item “Keypad pins are 4x2 matrix PH pin” must be enabled when user uses the keypad on
NUC970 develop board.
An example code is in BSP/applications/demos/keypad for reference.

 RTC

Device Drivers --->

 [*] Real Time Clock --->

 <*> NUC970 RTC driver

 CAN
NUC970 series support 2 CAN ports which can be configured individually. Please follow the
instruction below to enable CAN port function.
User can enable or disable each port on configuration page. CAN0 port has various GPIO pins
can be selected.

-*- Networking support --->

 <*> CAN bus subsystem support --->

 --- CAN bus subsystem support

 <*> CAN Gateway/Router (with netlink configuration)

 CAN Device Drivers --->

 <*> Platform CAN drivers with Netlink support

 [*] CAN bit-timing calculation

 <*> NUC970 CAN0/CAN1 devices --->

 --- NUC970 CAN0/CAN1 devices

 [*] NUC970 CAN0 support

 NUC970 CAN0 pin selection (Tx:PB11, Rx:PB10)
--->

 (X) Tx:PB11, Rx:PB10

 () Tx:PH3, Rx:PH2

 () Tx:PI4, Rx:PI32

 [*] NUC970 CAN1 support

 NUC970 CAN1 pin selection (Tx:PH15, Rx:PH14)
--->

 (X) Tx:PH15, Rx:PH14

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 121 of 138 Rev. 0.17

An example code is in BSP/applications/demos/CAN for reference

 ADC Battery
Please enable ”NUC970 ADC battery driver” function in “Power supply class support” item to
support ADC battery interface.

Device Drivers --->

 [*] Power supply class support --->

 <*> NUC970 ADC battery driver --->

User can check battery current status in ”sys/class/power_supply” directory after system boots
up.
User can use “cat” command to read the current status like,
$ cat voltage_now, read the current battery voltage
$ cat present. read the battery capacity in percentage

cd /sys/class/power_supply

ls

NUC970 Battery(ADC)

cd NUC970\ Battery\ (ADC\)

ls

present technology uevent voltage_now

subsystem type voltage_max_design

 ADC keypad/touch screen
Please enable the following items to support ADC keypad or touch screen function.

Device Drivers --->

 [*] Input device support --->

 <*> Event interface

 <*> Input NUC970 ADC --->

 <*>Keypad support

 <*>Touchscreen support

When use keypad function, user can adjust return value of each button or ADC threshold value
by modifying nuc970_keycode or nuc970_key_th structure in drivers/input/nuvoton/nuc970adc.c
driver.
The following is a brief description and example to configure those two structures.
If user wants to have 8 keys via ADC interface and name of them will be “KEY_A”, “KEY_B”~
“KEY_H” in nuc970_keycode structure. Then try to get reasonable value of ADC range for each
key in nuc970_key_th structure.

static int nuc970_keycode[] = {

 KEY_A,

 KEY_B,

 KEY_C,

 KEY_D,

 KEY_E,

 KEY_F,

 KEY_G,

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 122 of 138 Rev. 0.17

 KEY_H,

};

static struct key_threshold nuc970_key_th[] = {

 {0x500,0x5ff},

 {0x600,0x6ff},

 {0x700,0xaff},

 {0xa00,0xb4f},

 {0xb50,0xbff},

 {0xc00,0xcff},

 {0xd00,0xd49},

 {0xd50,0xe00},

};

 Touch screen calibration by using tslib utility
When use touchscreen function, user can adjust return Z_TH threshold value by “#define Z_TH”
in drivers/input/nuvoton/nuc970adc.c driver. Z_TH can be to avoid pendown detection wrong.
TSLIB-1.1 source code is included in this BSP and can be found in applications/tslib-1.1
directory.
The usage of touch screen library tslib list as below.
1. Compile tslib-1.1

 ./configure --prefix=$(pwd)/install --enable-static --enable-shared --host=arm-linux
 make
 make install

2. Copy all of files in “install” directory to rootfs directory.
3. Modify rootfs/etc/profile and add the following commands.

export TSLIB_CONFFILE=/etc/ts.conf

export TSLIB_PLUGINDIR=/lib/ts

export TSLIB_TSDEVICE=/dev/input/event0

export TSLIB_CALIBFILE="/etc/pointercal"

export TSLIB_CONSOLEDEVICE="none"

4. Modify rootfs/etc/ts.conf file.

Uncomment if you wish to use the linux input layer event interface

module_raw input

Uncomment if you're using a Sharp Zaurus SL-5500/SL-5000d

module_raw collie

Uncomment if you're using a Sharp Zaurus SL-C700/C750/C760/C860

module_raw corgi

Uncomment if you're using a device with a UCB1200/1300/1400 TS interface

module_raw ucb1x00

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 123 of 138 Rev. 0.17

Uncomment if you're using an HP iPaq h3600 or similar

module_raw h3600

Uncomment if you're using a Hitachi Webpad

module_raw mk712

Uncomment if you're using a Hitachi Webpad

module_raw mk712

Uncomment if you're using an IBM Arctic II

module_raw arctic2

module pthres pmin=1

module variance delta=30

module dejitter delta=100

module linear

5. Please follow the instruction displayed on screen by using ts_calibrate calibration program.

After that, can use ts_test to do the test. If result is poor for the test, user can run the
calibration program again.

ts_calibrate

xres = 800, yres = 480

Took 26 samples...

Top left : X = 3505 Y = 353

Took 24 samples...

Top right : X = 3421 Y = 3740

Took 37 samples...

Bot right : X = 546 Y = 3736

Took 27 samples...

Bot left : X = 585 Y = 342

Took 30 samples...

Center : X = 1993 Y = 2041

-20.572632 -0.000537 0.206449

508.422333 -0.131128 -0.002377

Calibration constants: -1348248 -35 13529 33319966 -8593 -155 65536

6. The following content will be shown on screen after executing ts_test program.

ts_test

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 124 of 138 Rev. 0.17

,.,,.

 SCUART
There are two smart card interfaces built in NUC970 series. They have additional UART function
to simulate as basic UART port when there is not enough UART to be used in system.
In this mode, the SC_CLK pin will be used to as transmit function and SC_DATA will be receive
function. Those two pins can be enabled individually and there are some pin selections at
SCUART0 interface.

Device Drivers --->

 Character devices --->

 Serial drivers --->

 [*] NUC970 Smartcard UART mode support

 [*] NUC970 SCUART0 support

 NUC970 SCUART0 pin selection (Tx:PG11, Rx:PG12) --->

 [*] NUC970 SCUART1 support

The device node for the SCUART is /dev/ttySCU0 or /dev/ttySCU1. The basic operation of
SCUART is the same with normal UART but have a lot of limitations, for example, there are only
four levels of FIFO and can’t support flow control function, can’t support RS485 and IrDA
transmission mode. It is better to use normal UART only if they are all occupied by system.

 Loopback device
A loop device is a pseudo-device that makes a file accessible as a block device. Before use, a
loop device must be connected to an existing file in the file system.
Please enable the following items to support loopback device.

Device Drivers --->

 Block devices --->

 <*> Loopback device support

The usage of loopback device lists as the following steps.
1. Create image file for mounting on loopback device.

$ dd if=/dev/zero bs=1M count=1 of=fat.img

2. Format image (take FATFS for example)

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 125 of 138 Rev. 0.17

$ busybox mkfs.vfat fat.img

3. Mount image

$ mount -o loop fat.img /mnt/loop

 File System 5.3.4

 FAT
FAT is common file system and can be seen usually on SD card or USB mass storage device.
User can enable the following items to support it.

File systems --->

 DOS/FAT/NT Filesystems --->

 <*> MSDOS fs support

 <*> VFAT (Windows-95) fs support

 (437) Default codepage for FAT

 (iso8859-1) Default iocharset for FAT

Command for mounting the first partition on SD card is list as following.

$ mount –t vfat /dev/mmcblk0p1 /mnt

 JFFS2
JFFS2 is one of the file system used on NAND flash. Please enable the following items to
support it.

File systems --->

 [*] Miscellaneous filesystems --->

 <*> Journalling Flash File System v2 (JFFS2) support

 [*] JFFS2 write-buffering support

 ROMFS
ROMFS is one of the file system used on root file system. Please enable the following items to
support it.

File systems --->

 [*] Miscellaneous filesystems --->

 <*> ROM file system support

 RomFS backing stores (Block device-backed ROM file system
support) --->

 YAFFS2
YAFFS2 is one of the file system used on NAND flash. Before enabling the following items, user
needs to enable MTD item “Caching block device access to MTD devices Device drivers” first.

File systems --->

 [*] Miscellaneous filesystems --->

 <*> yaffs2 file system support

 <*> Autoselect yaffs2 format

 <*> Enable yaffs2 xattr support

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 126 of 138 Rev. 0.17

Command for mounting YAFFS2 is list as following.

$ mount –t yaffs2 –o”inband-tags” /dev/mtdblock2 /flash

 exFAT
exFAT is a new generation file system created by Microsoft. It is more flexible about size of single
file and total capacity of device.

File systems --->

 DOS/FAT/NT Filesystems --->

 <*> exFAT fs support

Command for mounting the first partition on SD card is list as following.

$ mount –t exfat /dev/mmcblk0p1 /mnt

 FUSE and NTFS
FUSE (Filesystem in Userspace) is a kind of file system that is implemented for user space. User
can implement much kind of file systems by FUSE. The famous file system that is implement by
FUSE are NTFS-3G or SSHFS and so on. The following is an example that implements Microsoft
NTFS (NTFS-3G) by FUSE.
Please enable the following item to support FUSE function.

File systems --->

 <*> FUSE (Filesystem in Userspace) support

NTFS-3G is an open source project developed and implemented by Tuxera. It is a driver which
can read and write NTFS on Linux and source code can be downloaded from
http://www.tuxera.com/community/ntfs-3g-download page. Please refer to user’s manual of ntfs-
3g to compile it. And mount it by the following command.

$./ntfs-3g /dev/mmcblk0p1 /mnt/mmc

 UBIFS
Please enable the following items to support it.

Device Drivers --->

-*- Memory Technology Device (MTD) support --->

<*> Enable UBI - Unsorted block images --->

File systems --->

 [*] Miscellaneous filesystems --->

 <*> UBIFS file system support

 [*] Advanced compression options

 [*] LZO compression support

 FIQ 5.3.5

In order to make sure the real time of interrupt, user can use FIQ instead of IRQ. This section
includes an example which describes how to use timer2 FIQ.
Please enable the following item to support FIQ in system.

Kernel Configuration

 System Type --->

 [*] Nuvoton NUC970 FIQ support

Example

http://www.tuxera.com/community/ntfs-3g-download

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 127 of 138 Rev. 0.17

/*IRQ handler for the timer*/

void nuc970_timer2_interrupt(void) {

 // ... add some code here

 __raw_writel(0x04, REG_TMR_TISR); /* clear timer2 flag */

}

static uint8_t fiqStack[1024];

extern unsigned char fiq_handler, fiq_handler_end;

static struct fiq_handler timer2_fiq = {

 .name = "timer2_fiq_handler"

};

void use_fiq(void) {

int ret;

struct pt_regs regs;

init_FIQ(0);

ret = claim_fiq(&timer2_fiq);

if (ret)

return;

set_fiq_handler(&fiq_handler, &fiq_handler_end - &fiq_handler);

// set some registers use in FIQ handler

regs.ARM_r8 = (long)nuc970_timer2_interrupt;

regs.ARM_r10 = (long)REG_AIC_IPER;

regs.ARM_sp = (long)fiqStack + sizeof(fiqStack) - 4;

set_fiq_regs(®s);

/* Enable the FIQ */

__raw_writel(__raw_readl(REG_AIC_SCR7) & ~0x00070000, REG_AIC_SCR7);

enable_fiq(IRQ_TMR2);

}

Note that, the regs.ARM_r8 must be the address of fiq handler function and regs.ARM_r10 must
be the address of REG_AIC_IPER register.
User needs to configure timer2 if necessary additionally.

5.4 Linux Kernel Compilation

After finish the configuration of kernel, type “make” command to compile kernel in linux-3.10.x
directory. If no error happens, the kernel image file and kernel zip file will be output to upper
image directory.

$ make

......

 Kernel: arch/arm/boot/Image is ready

cp arch/arm/boot/Image ../image/970image

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 128 of 138 Rev. 0.17

zip ../image/970image.zip ../image/970image

updating: ../image/970image (deflated 31%)

 GZIP arch/arm/boot/compressed/piggy.gzip

 CC arch/arm/boot/compressed/misc.o

 AS arch/arm/boot/compressed/piggy.gzip.o

 LD arch/arm/boot/compressed/vmlinux

 OBJCOPY arch/arm/boot/zImage

 Kernel: arch/arm/boot/zImage is ready

$ ls ../image/

970image 970image.zip

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 129 of 138 Rev. 0.17

6 Linux user applications

6.1 Sample applications

There are some sample applications in the applications/ directory. Content of each directory
listed in the following table

Directory Description

alsa-utils-1.0.23 ALSA command line utilities.*

Cross compilation command as below:

$./configure –host=arm-linux –disable-nls --disable-
xmlto CPPFLAGS=-
I/usr/local/arm_linux_4.3/usr/include/ncurses
LDFLAGS=-L/usr/local/arm_linux_4.3/usr/lib

Sample mixer setting for playback:

 $./amixer set PCM 85%
 $./amixer set Headphone 90%

Sample mixer setting for recording:

When source is Mic:

 $./amixer set “Mic Bias” on
 $./amixer set “Input PGA” 100%
 $./axmier set ADC 90%

When source is Line In:

 $./axmier set "Right Input Mixer R2" on
 $./axmier set "Left Input Mixer L2" on
 $./axmier set "L2/R2 Boost" 100%
 $./axmier set ADC 90%

Playback command:

 $./aplay <file name>

To playback the sample sound file in BSP, please use
following command:

$ cd usr

$./aplay –c 2 –f S16_LE alsa/8k2ch.pcm

Recording command:

 $./arecord –d 10 –f S16_LE –c2 –r8000 –t wav –
D plughw:0,0 <file name>

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 130 of 138 Rev. 0.17

Command to record and play simultaneously:

 $./arecord -f S16_LE -r 8000 -c 2 -D plughw:0,0
| ./aplay

benchmark/netperf-2.6.0 Network performance benchmarking tool. Cross
compilation command below:

$./configure –host=arm-linux

busybox-1.22.1/ Busybox source code. Cross compilation command
below:

1. $ make menuconfig
2. Select applets to be build
3. $ make

demos/2d 2D graphic engine sample application

(Need to enable user’s space memory management in
kernel, please refer to Error! Reference source not
ound. section)

demos/alsa_audio Audio sample application. *

demos/cap Video capture sample application. *

demos/can CAN bus sample application

demos/crypto Encryption/decryption sample application. *

demos/etimer Enhanced timer sample application. *

demos/gpio GPIO sample application. *

demos/irda IrDA sample application. *

demos/lcm/ LCD sample application. *

demos/thread Thread sample applications. *

demos/rtc RTC sample application. *

demos/uart UART sample application. *

demos/wdt Watchdog timer sample application. *

demos/wwdt Window watchdog timer sample application. *

DPO_RT3070_LinuxSTA_V2.3.0.2_201004
12

RT3070 USB WiFi dongle open source driver.

wireless_tools.29 WiFi configuration tools. Including iwconfig, iwlist,
iwpriv…

tslib-1.1 Touch screenlibrary, including calibration and test
utilities. *

yaffs2utils.tar.gz yaffs2 command tool. Simply type make to compile

$ make

lzo-2.09.tar.gz Compress/decompress utility.
Cross compilation command below:
$ cd lizo-2.09
$./configure --host=arm-linux --prefix=$PWD/../install
$ make

$ make install

libuuid-1.0.3.tar.gz Utility to create UUID. Cross compilation command
below:
$ cd libuuid-1.0.3
$./configure --host=arm-linux --prefix=$PWD/../install

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 131 of 138 Rev. 0.17

$ make

$ make install

mtd-utils.tar.gz mtd-utils source code. Required to use lzo-2.09.tar.gz
and libuuid-1.0.3.tar.gz
Cross compilation command below:
$ cd mtd-utils
$ export CROSS=arm-linux-
$ export WITHOUT_XATTR=1
$ export DESTDR=$PWD/../install
$ export LZOCPPFLAGS=-I/home/install/include
$ export LZOLDFLAGS=-L/home/install/lib
$ make

$ make install

qt-everywhere-opensource-src-4.8.5 QT gui source code
1. Please make following modifications to support
touch screen using tslib:
qt-everywhere-opensource-src-
4.8.5/mkspecs/qws/linux-nuc970-g++/qmake.conf
Set QMAKE_INCDIR and QMAKE_LIBDIR as below:
QMAKE_INCDIR = path to /tslib-1.1/install/include
QMAKE_LIBDIR = path to /tslib-1.1/install/lib

2.Set environment variable:
$ export
MY_CC_QT4_PREFIX=/usr/local/Trolltech/QtEmbedde
d-4.8.5

3.Configure：

./configure \
-prefix ${MY_CC_QT4_PREFIX} \
-release \
-opensource \
-static \
-qconfig dist \
-no-exceptions \
-no-accessibility \
-no-stl \
-no-qt3support \
-no-xmlpatterns \
-no-multimedia \
-no-audio-backend \
-no-phonon \
-no-phonon-backend \
-no-svg \
-no-webkit \
-no-javascript-jit \
-no-script \
-no-scripttools \
-no-declarative \
-no-declarative-debug \
-qt-zlib \
-qt-freetype \
-no-gif \
-qt-libpng \

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 132 of 138 Rev. 0.17

-no-libmng \
-no-libtiff \
-qt-libjpeg \
-no-openssl \
-nomake tools \
-nomake demos \
-nomake examples \
-nomake docs \
-nomake translations \
-no-nis \
-no-cups \
-no-iconv \
-no-pch \
-no-dbus \
-embedded arm \
-platform qws/linux-x86-g++ \
-xplatform qws/linux-nuc970-g++ \
-no-gtkstyle \
-no-nas-sound \
-no-opengl \
-no-openvg \
-no-sm \
-no-xshape \
-no-xvideo \
-no-xsync \
-no-xinerama \
-no-xcursor \
-no-xfixes \
-no-xrandr \
-no-xrender \
-no-mitshm \
-no-fontconfig \
-no-xinput \
-no-xkb \
-no-glib \
-qt-gfx-linuxfb \
-qt-mouse-tslib \
-qt-kbd-linuxinput

4. Cross compilation command:
$ make

5. Compile example
$ cd /path/to/qt-everywhere-opensource-src-
4.8.5/examples/dialogs/trivialwizard
$../../../bin/qmake
$ make

6. Run QT
a.Copy trivialwizard where system can access
b.Set tslib environment variable
$ export
QWS_MOUSE_PROTO=Tslib:/dev/input/event0
c.Execute
$ trivialzardwizard –qws

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 133 of 138 Rev. 0.17

Minigui-3.0.12 Cross compilation command below:

1. Build libminigui-gpl-3.0.12

$./configure --prefix=$PWD/../build CC=arm-linux-gcc
--host=arm-linux --build=i386-linux --with-osname=linux
--with-targetname=fbcon --disable-pcxvfb --enable-
videonuc970 --enable-videofbcon --enable-autoial --
disable-vbfsupport --disable-screensaver
$ make
$ make install

2. Build minigui-res-be-3.0.12

$./configure --prefix=$PWD/../build
$ make
$ make install

3. Build mg-samples-3.0.12

$ export
PKG_CONFIG_PATH="$PWD/../build/lib/pkgconfig"
$./configure --prefix=$PWD/../build CC=arm-linux-gcc
--host=arm-linux --build=i386-linux CFLAGS=-
I$PWD/../build/include
$ make
$ make install

4. Copy all the files and directories in build directory
to rootfs

5. Modify /etc/MiniGUI.cfg and put together with
executable file of minigui in the same directory.

[system]

GAL engine and default options

gal_engine=nuc970

defaultmode=800x480-32bpp

IAL engine

ial_engine=fbcon

mdev=/dev/input/mice

mtype=IMPS2

[nuc970]

defaultmode=800x480-32bpp

[fbcon]

defaultmode=800x480-32bpp

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 134 of 138 Rev. 0.17

[cursorinfo]

Edit following line to specify cursor
files path

cursorpath=/share/minigui/res/cursor/

[resinfo]

respath=/share/minigui/res/

6. Must enable ps2 mouse function in kernel. (Please
refer to Error! Reference source not found.
ection)

*. The execution result will be incorrect if the driver is not enabled in kernel configuration and/or
jumper/ switch setting on EV board setting is inconsistent with kernel configuration.

6.2 Cross compilation

Sometimes a project requires porting an application to ARM platform. Many open source projects
already supports cross compiling. Simply follow these projects’ document to configure for cross
compiling to build executable files or libraries for ARM platform.
If the application’s Makefile doesn’t support cross compilation options, the modification of
Makefile is necessary. The Makefile used for cross compiling could be alike with the original one,
only part of it needs to be modified
 The prefix of tool chain must be set. For example, the original Makefile use gcc for

compiling, the new Makefile use arm-linux-gcc for cross compiling. Other tools for example,
as and ld need to change to arm-linux-as and arm-linux-ld respectively.

 The path of library and include files need to be set. The cross compiler doesn’t use the glibc
or other library using in x86 system. Rather it links with uClibc which consumes less system
resource.

Here is a simple Makefile for your reference.

.SUFFIXES : .x .o .c .s

ROOT = /usr/local/arm_linux_4.3/usr

LIB =$(ROOT)/lib

LIB1 = $(ROOT)/lib/gcc/arm-linux-uclibcgnueabi/4.3.4

INC :=$(ROOT)/include

INC1:=$(ROOT)/ lib/gcc/arm-linux-uclibcgnueabi/4.3.4/include

CC=arm-linux-gcc -O2 -I$(INC) -I$(INCSYS)

WEC_LDFLAGS=-L$(LIB) -L$(LIB1)

STRIP=arm-linux-strip

TARGET = hello

SRCS := hello.c

LIBS= -lc -lgcc -lc

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 135 of 138 Rev. 0.17

all:

 $(CC) $(WEC_LDFLAGS) $(SRCS) -o $(TARGET) $(LIBS)

 $(STRIP) $(TARGET)

clean:

 rm -f *.o

 rm -f $(TARGET)

 rm -f *.gdb

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 136 of 138 Rev. 0.17

7 Revision Hisotry

Verison Date Description

0.08 Aug. 15, 2014 Initial release

0.09 Oct. 8, 2014
1. Editorial change
2. Added driver configuration for USB Device, keypad, RTC,

ADC/tslib

0.10 Oct. 24, 2014
1. Added U-Boot SPL configuration description
2. Updated Nu-Writer usage guide

0.11 Oct. 28, 2014
1. Added a section describes hot to program U-Boot using Nu-Writer.
2. Added Linux kernel SCUART setting descriotion

0.12 Nov. 26, 2014

1. Added U-Boot MMC configuration description
2. Added U-Boot LCD configuration description
3. Added Loop back device configuration description
4. Added exFAT/NTFS configuration description
5. Added U-Boot eMMC configuration description
6. Added QT application
7. Modified tslib configuration description

0.13 Mar. 6, 2015

1. Added U-Boot bootm command description
2. Added U-Boot UBI command description
3. Modified U-Boot mkimage tool description
4. Added U-Boot GPIO configuration description
5. Added U-Boot Watchdog timer configuration description

0.14 Apr. 8, 2015

1. Modified alsa-utils-1.0.23 usage description
2. Modified LCD device driver description
3. Modified U-Boot SPI configuration description
4. Modified U-Boot NAND configuration description
5. Modified U-Boot CONFIG_SYS_NAND_U_BOOT_OFFS

configuration description
6. Modified U-Boot NAND AES secure boot example
7. Modified U-Boot SPI command description
8. Modified U-Boot NAND command description
9. Modified U-Boot env command script sample
10. Added U-Boot CONFIG_BOOTP_SERVERIP configuration

description
11. Added U-Boot CONFIG_ENV_RANGE configuration description

0.15 May. 6, 2015

1. Modified kernel default setting description
2. Modified NuWriter NAND/eMMC/SPI Read mode configuration

description
3. Added lzo-2.09/libuuid-1.03/mtd-utils/yaffs2utils description in
4. Added UBIFS filesystem configuration description
5. Added section 3.8.4 for create different FS Image
6. Added Linux kernel FIQ usage description

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 137 of 138 Rev. 0.17

0.16 May. 29, 2015

1. Added YAFFS2 inband-tags Image usage description
2. Added YAFFS2 command usage description
3. Added description for using YAFFS2 as root file system
4. Added description for using UBIFS as root file system
5. Added RTL8188 USB dongle usage description

0.17 Nov. 06, 2015

1. Added NFS boot description.
2. Added SPI flash boot description.
3. Added 2D driver configuration.
4. Added user’s space memory management description.
5. Added color format selection description.
6. Added description for using aplay.
7. Added description for U-Boot go command.
8. Modify menu selection of USB host.
9. Added description for RTL8188.
10. Added CAN driver configuration.
11. Correct typo.

 NUC970 Linux BSP User Manual

Nov. 06, 2015 Page 138 of 138 Rev. 0.17

Important Notice

Nuvoton Products are neither intended nor warranted for usage in systems or equipment, any
malfunction or failure of which may cause loss of human life, bodily injury or severe property
damage. Such applications are deemed, “Insecure Usage”.

Insecure usage includes, but is not limited to: equipment for surgical implementation, atomic
energy control instruments, airplane or spaceship instruments, the control or operation of
dynamic, brake or safety systems designed for vehicular use, traffic signal instruments, all
types of safety devices, and other applications intended to support or sustain life.

All Insecure Usage shall be made at customer’s risk, and in the event that third parties lay
claims to Nuvoton as a result of customer’s Insecure Usage, customer shall indemnify the
damages and liabilities thus incurred by Nuvoton.

	1 NUC970 Linux BSP Introduction
	1.1 Develop Environment
	1.2 Dev Board Setting

	2 BSP Installation
	2.1 System Requirement
	2.2 Download and installation VMware virtual machine
	2.3 Download and installation CentOS Linux
	2.4 Install missing packages
	2.5 BSP installation procedures

	3 Nu-Writer Usage Guide
	3.1 Overview
	3.2 Installing the Nu-Writer Driver
	3.3 USB ISP
	3.4 Select Chips
	3.5 DDR/SRAM Mode
	3.6 eMMC Mode
	3.6.1 Add a New Image
	3.6.2 Read Raw Data
	3.6.3 Format (FAT32)

	3.7 SPI Mode
	3.7.1 Add a New Image
	3.7.2 Read Raw Data
	3.7.3 Erase SPI Flash

	3.8 NAND Mode
	3.8.1 Add a New Image
	3.8.2 Read Raw Data
	3.8.3 Erase NAND Flash
	3.8.4 Make file system image

	3.9 MTP Mode
	3.9.1 Add a New Key

	3.10 PACK Mode
	3.10.1 Add a New Image
	3.10.2 Modify an Image
	3.10.3 Delete an Image
	3.10.4 Create a Pack Image
	3.10.5 Program a Pack Image
	3.10.6 Create and Program a Pack Image

	3.11 Program U-Boot
	3.11.1 Preparation of related files:
	3.11.2 U-Boot environment variable files (env.txt)
	3.11.3 Burn U-Boot into NAND Flash
	3.11.4 Burn U-Boot into SPI Flash
	3.11.5 Burn U-Boot into eMMC

	3.12 Nu-Writer Trouble Shooting

	4 U-Boot user manual
	4.1 Configuration
	4.2 Directory structure
	4.3 Compile U-Boot
	4.3.1 Compile command
	4.3.2 Output file after compilation
	4.3.3 Main U-Boot link address
	4.3.4 SPL U-Boot link address

	4.4 NAND AES secure boot example
	4.4.1 Compile Main U-Boot 以及 SPL U-Boot
	4.4.2 Burn SPL U-Boot
	4.4.3 Burn Main U-Boot
	4.4.4 Burn Linux kernel
	4.4.5 nboot command to boot Linux kernel in NAND flash

	4.5 U-Boot Command
	4.5.1 Bootm command
	4.5.2 Go command
	4.5.3 Network relative command
	4.5.4 Nand flash commands
	4.5.5 SPI flash commands
	4.5.6 Memory commands
	4.5.7 USB commands
	4.5.8 Environment variable commands
	4.5.9 Decrypt commands
	4.5.10 MMC commands
	4.5.11 MTD commands
	4.5.12 UBI commands
	4.5.13 YAFFS2 commands

	4.6 Environment variables
	4.6.1 Environment variables configuration
	4.6.2 Default environment variables
	4.6.3 Command Script
	4.6.4 New added environment variable

	4.7 mkimage tool
	4.7.1 Use mkimage to generate Linux kernel image
	4.7.2 Checksum calculation (SHA-1 or crc32)
	4.7.3 AES encrypt

	4.8 Security issue
	4.8.1 Encrypt
	4.8.2 Decrypt
	4.8.3 Risk

	4.9 Watchdog timer
	4.9.1 Watchdog timer configuration
	4.9.2 Watchdog timer environment variables
	4.9.3 Watchdog timer period

	4.10 U-Boot LCD
	4.10.1 NUC970 LCD display content
	4.10.2 How to replace LOGO

	4.11 GPIO
	4.11.1 NUC970 GPIO
	4.11.2 GPIO driver interface
	4.11.3 Example

	4.12 Network test environment
	4.12.1 Set static IP address
	4.12.1 TFTP and DHCP server

	4.13 Notice

	5 Linux Kernel
	5.1 The Configuration Interface for the Kernel
	5.2 Default Configuration
	5.3 Linux Kernel Configuration
	5.3.1 Basic Configuration of System
	5.3.2 Network
	5.3.3 Drivers
	5.3.4 File System
	5.3.5 FIQ

	5.4 Linux Kernel Compilation

	6 Linux user applications
	6.1 Sample applications
	6.2 Cross compilation

	7 Revision Hisotry

